Answer on Question \#62780 - Math - Differential Equations

Question

Solve
$d^{2} B z(x) / d x^{2}=B z(x) /$ some contant ${ }^{2}$
The z is in subscript and solve this equation.

Solution

Let a^{2} be a constant. The solution of equation

$$
\begin{equation*}
\frac{d^{2} B_{Z}(x)}{d x^{2}}=\frac{B_{Z}(x)}{a^{2}} \tag{1}
\end{equation*}
$$

can be found in the following form:

$$
B_{z}(x)=e^{\lambda x} .(2)
$$

Substituting (2) into the equation (1) obtain

$$
\begin{equation*}
\frac{d^{2} B_{z}(x)}{d x^{2}}=\lambda^{2} e^{\lambda x}=\frac{1}{a^{2}} e^{\lambda x} \tag{3}
\end{equation*}
$$

From (3) we obtain the characteristic equation:

$$
\lambda^{2}=\frac{1}{a^{2}}
$$

The solutions of equation (4) are

$$
\lambda=\frac{1}{a} \text { and } \lambda=-\frac{1}{a} .
$$

Then we obtain two particular solutions, namely

$$
B_{z 1}(x)=e^{x / a} \text { and } B_{z 2}(x)=e^{-x / a}
$$

The general solution of the original equation (1) is a linear combination of particular solutions:

$$
B_{z}(x)=C e^{x / a}+D e^{-x / a}
$$

where C and D are real constants.
The general solution of (1) can also be written as

$$
B_{z}(x)=E \sinh (x / a)+F \cosh (x / a)
$$

where E and F are real constants;
$\sinh (x / a)=\frac{1}{2}\left(e^{x / a}-e^{-x / a}\right)$ is the hyperbolic sine and $\cosh (x / a)=\frac{1}{2}\left(e^{x / a}+\right.$ $\left.e^{-x / a}\right)$ is the hyperbolic cosine. These functions are particular solutions too.

Answer: $B_{z}(x)=C e^{x / a}+D e^{-x / a}$ or

$$
B_{z}(x)=E \sinh (x / a)+F \cosh (x / a)
$$

