Answer on Question #62636 - Math - Algorithms | Quantitative Methods

Question

Let f(n) and g(n) be functions with domain $\{1, 2, 3, \ldots\}$.

Prove the following:

If $f(n) = \Omega(g(n))$, then g(n) = O(f(n)).

Solution

If $f(n) = \Omega(g(n))$, then, by definition of Ω , there exist positive constants c and n_0 such that

$$c|g(n)| \leq |f(n)|$$
 for all $n \geq n_0$.

Hence,

$$|g(n)| \leq \frac{|f(n)|}{c}.$$

Set

$$\frac{1}{c} = k.$$

If c > 0, then k > 0.

Besides,

$$|g(n)| \le k|f(n)|.$$

Therefore, there exist positive constants **k** and n_0 such that $|g(n)| \le k|f(n)|$ for all $n \ge n_0$.

By definition of O,

$$g(n) = O(f(n)).$$

www.AssignmentExpert.com