Answer on Question \#62636 - Math - Algorithms | Quantitative Methods Question

Let $f(n)$ and $g(n)$ be functions with domain $\{1,2,3, \ldots\}$.
Prove the following:
If $f(n)=\Omega(g(n))$, then $g(n)=O(f(n))$.
Solution
If $f(n)=\Omega(g(n))$, then, by definition of Ω, there exist positive constants c and n_{0} such that

$$
c|g(n)| \leq|f(n)| \text { for all } n \geq n_{0} .
$$

Hence,

$$
|g(n)| \leq \frac{|f(n)|}{c}
$$

Set

$$
\frac{1}{c}=k
$$

If $\mathrm{c}>0$, then $\mathrm{k}>0$.
Besides,

$$
|g(n)| \leq k|f(n)| .
$$

Therefore, there exist positive constants \mathbf{k} and n_{0} such that $|g(n)| \leq k|f(n)|$ for all $\mathrm{n} \geq \mathrm{n}_{\mathrm{o}}$.

By definition of O ,

$$
g(n)=O(f(n))
$$

