Answer on Question \#62147 - Math - Differential Equations

Question

Which of the following represent the solution of the differential equation $d^{\wedge} 2 y / d x^{\wedge} 2+4 y=0$
$5 \tan 2 x+5 \cos 2 x$
$5 \sin 2 x+4 \cos 2 x$
$5 \sin 2 x-3 \cos 2 x$
$5 \sin ^{\wedge} 22 x-3 \cos 2 x$

Solution

The differential equation

$$
\frac{d^{2} y}{d x^{2}}+4 y=0
$$

has the characteristic equation

$$
\lambda^{2}+4=0
$$

its roots are

$$
\lambda_{1}=2 i, \lambda_{2}=-2 i .
$$

Hence the solution of the differential equation (1) is
$y=C_{1} \sin (2 x)+C_{2} \cos (2 x) ;$
So, $y=5 \sin 2 x+4 \cos 2 x$ and $y=5 \sin 2 x-3 \cos 2 x$ can be solutions of the differential equation (1).
Answer: $y=5 \sin 2 x+4 \cos 2 x ; y=5 \sin 2 x-3 \cos 2 x$.

