Question

Let X have a standard gamma distribution with $\alpha=7$.
Compute $\mathrm{P}(\mathrm{X}<4$ or $\mathrm{X}>6$)
0.912
0.625
0.812
0.713

Solution

For $\alpha>0$ the gamma function is defined as follows:

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

For integer $n: \Gamma(n)=(n-1)$!
If X is a continuous random variable, then X is said to have a gamma distribution if the pdf of X is

$$
f(x)=\frac{\left(\frac{x-\mu}{\beta}\right)^{\alpha-1} \cdot \exp \left(-\frac{x-\mu}{\beta}\right)}{\beta \Gamma(\alpha)}, x \geq \mu ; \alpha, \beta>0,
$$

where α is the shape parameter, μ is the location parameter, β is the scale parameter, and Γ is the gamma function.
If $\beta=1$ and $\mu=0$ then we have the standard gamma distribution.

$$
f(x)=\frac{x^{\alpha-1} e^{-x}}{\Gamma(\alpha)}, x \geq 0 ; \alpha>0
$$

When X follows the standard gamma distribution then its cdf is

$$
F(x ; \alpha)=\int_{0}^{x} \frac{y^{\alpha-1} e^{-y}}{\Gamma(\alpha)} d y, x>0
$$

This is also called the incomplete gamma function. The cumulative distribution function of the gamma distribution can be calculated using the function GAMMA.DIST in Microsoft Excel.

$$
\begin{aligned}
P(X<4 \text { or } X & >6)=P(X<4)+P(X>6)=P(X<4)+1-P(X<6)= \\
& =F(4 ; 7)+1-F(6 ; 7) \approx 0.110674+0.606303=0.716977 \approx \\
& \approx 0.717 .
\end{aligned}
$$

Answer: 0.717.

Question

Let $X=$ the time between two successive arrivals at the drive -up window of a bank. If X has a exponential distribution with $h=1$ (which is identical to a standard gamma distribution with $a=1$). Compute the standard deviation of the time between successive arrivals.

2
1
3
4

Solution

The probability density function (pdf) of a exponential distribution is

$$
f(x)=\left\{\begin{array}{c}
h e^{-h x}, x \geq 0 \\
0, \quad \text { otherwise } .
\end{array}\right.
$$

In our case $h=1$ and $f(x)=e^{-x}, x \geq 0$.

$$
\begin{aligned}
& E(X)=\int_{-\infty}^{+\infty} x f(x) d x \\
&=\int_{0}^{+\infty} x e^{-x} d x \\
&=-\int_{0}^{+\infty} x d e^{-x}=-\left(\left.x e^{-x}\right|_{0} ^{+\infty}-\int_{0}^{+\infty} e^{-x} d x\right) \\
&=-\left(\left.x e^{-x}\right|_{0} ^{+\infty}+\left.e^{-x}\right|_{0} ^{+\infty}\right)=-\lim _{A \rightarrow+\infty}\left(\left.x e^{-x}\right|_{0} ^{A}+\left.e^{-x}\right|_{0} ^{A}\right)= \\
&=-\lim _{A \rightarrow+\infty}\left(A e^{-A}-0+e^{-A}-1\right)=1 ;
\end{aligned}
$$

$V(X)=\int_{0}^{\infty}(x-1)^{2} e^{-x} d x=\left|\begin{array}{cc}u=x-1 & d u=d x \\ (x-1)^{2}=u^{2} & e^{-x}=\frac{1}{e} e^{-u}\end{array}\right|=\frac{1}{e} \int_{-1}^{\infty} u^{2} e^{-u} d u$;
$\int u^{2} e^{-u} d u=-\int u^{2} d\left(e^{-u}\right)=-u^{2} e^{-u}+2 \int u e^{-u} d u=-u^{2} e^{-u}-$
$-2 \int u d\left(e^{-u}\right)=-u^{2} e^{-u}-2 u e^{-u}+2 \int e^{-u} d u=-u^{2} e^{-u}-2 u e^{-u}-2 e^{-u}$
$V(x)=\frac{1}{e} \cdot\left[-u^{2} e^{-u}-2 u e^{-u}-\left.2 e^{-u}\right|_{-1} ^{\infty}\right]=\frac{1}{e} \cdot[-0-0-0+e-2 e+2 e]=1$.
The standard deviation is
$\sigma=\sqrt{V(X)}=\sqrt{1}=1$.
Answer: 1.

