Answer on Question \#62103 - Math - Statistics and Probability

Question

3. Each of 12 refrigerators of a certain type has been returned to a distributor because of an audible, highpitched, oscillating noise when the refrigerator is running. Suppose that 7 of these refrigerators have defective compressor and the other 5 have less serious problems. If the refrigerators are examined in random order. Let X be the number among the first 6 examined that have a defective compressor. What is the probability that X exceeds its mean value by more than 1 standard deviation?

Solution

It is hypergeometric probability distribution with $N=12, n=6, M=7, N-M=5$.

$$
\begin{gathered}
\mu=n \frac{M}{N}=6 \frac{7}{12}=3.5 \\
\sigma=\sqrt{n \frac{M}{N} \frac{N-M}{N} \frac{N-n}{N-1}}=\sqrt{6 \frac{7}{12} \frac{5}{12} \frac{12-6}{12-1}}=0.89 \\
\mu+\sigma=3.5+0.89=4.39
\end{gathered}
$$

The probability that X exceeds its mean value by more than 1 standard deviation is

$$
P(X>\mu+\sigma)=1-P(X<\mu+\sigma)=1-F(\mu+\sigma)
$$

We used Excel function HYPGEOM.DIST:

$$
\begin{gathered}
F(4.39)=\text { HYPGEOM. DIST }(4.39,6,7,12, \text { TRUE })=0.8788 \\
P(X>\mu+\sigma)=1-0.8788=0.1212 .
\end{gathered}
$$

Answer: 0.1212.

Question

4. The error involved in making a certain measurement is a continuous $r v X$ with $p d f$

$$
f(x)=\left\{\begin{array}{c}
0.09375\left(4-x^{2}\right),-2 \leq x \leq 2 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Compute $\mathrm{P}(-1<\mathrm{x}<1)$.

Solution

$$
\mathrm{P}(-1<\mathrm{x}<1)=\int_{-1}^{1} 0.09375\left(4-\mathrm{x}^{2}\right)=0.09375\left(4 x-\frac{x^{3}}{3}\right)_{-1}^{1}=0.09375\left(8-\frac{2}{3}\right)=0.6875
$$

Answer: 0.6875.

