Answer on Question \#62102 - Math - Statistics and Probability

Question

1. A certain shop repairs both audio and video components. Let A denote the event that the next component brought in for repair is an audio component, and let B be the event that the next component is a compact disc player (so the event B is contained in $A)$. Suppose that $P(A)=0.6$ and $P(B)=0.05$. What is $P(B \mid A)$?
0.027
0.064
0.072
0.083

Solution

Since B is contained in A , then $A \cap B=B$ and

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(B)}{P(A)}=\frac{0.05}{0.6}=\frac{1}{12} \approx 0.083 .
$$

Answer: $P(B \mid A)=\frac{1}{12} \approx 0.083$.

Question

2. Components of a certain type are shipped to a supplier in batches of ten. Suppose that 50% of all such batches contain no defective components, 30% contain one defective component, and 20% contain two defective components. Two components from a batch are randomly selected and tested. What are the probabilities associated with 0,1 , and 2 defective components being in the batch under the condition that neither tested component is defective. 0.677
0.512
0.578
0.617

Solution

Let B_{0} be the event that batch has 0 defectives, B_{1} be the event that batch has 1 defective, and B_{2} be the event that batch has 2 defectives. Let C be the event that neither selected component is defective.
It is given that

$$
P\left(B_{0}\right)=0.5, P\left(B_{1}\right)=0.3, P\left(B_{2}\right)=0.2 .
$$

The event C can happen in three different ways:
(i) The batch of 10 is perfect, and we get no defectives in the sample of two:

$$
P\left(C \mid B_{0}\right)=1 ;
$$

(ii) The batch of 10 has 1 defective, but the sample of two misses them:

$$
P\left(C \mid B_{1}\right)=\frac{\binom{9}{2}}{\binom{10}{2}}=\frac{9!2!(10-2)!}{2!\cdot(9-2)!\cdot 10!}=\frac{8}{10} ;
$$

(iii) The batch has 2 defective, but the sample misses them:

$$
P\left(C \mid B_{2}\right)=\frac{\binom{8}{2}}{\binom{10}{2}}=\frac{8!\cdot 2!\cdot(10-2)!}{2!\cdot(8-2)!\cdot 10!}=\frac{56}{90} .
$$

According to the total probability formula,

$$
\begin{aligned}
& P(C)=P\left(C \mid B_{0}\right) P\left(B_{0}\right)+P\left(C \mid B_{1}\right) P\left(B_{1}\right)+P\left(C \mid B_{2}\right) P\left(B_{2}\right)= \\
& =1 \cdot 0.5+\frac{8}{10} \cdot 0.3+\frac{56}{90} \cdot 0.2=\frac{389}{450 .}
\end{aligned}
$$

Using Bayes' law

$$
\begin{aligned}
& P\left(B_{0} \mid C\right)=\frac{P\left(C \mid B_{0}\right) P\left(B_{0}\right)}{P(C)}=\frac{1 \cdot 0.5}{\frac{389}{450}}=\frac{225}{389}=0.5784, \\
& P\left(B_{1} \mid C\right)=\frac{P\left(C \mid B_{1}\right) P\left(B_{1}\right)}{P(C)}=\frac{\frac{8}{10} \cdot 0.3}{\frac{389}{450}}=\frac{108}{389}=0.2776, \\
& P\left(B_{2} \mid C\right)=\frac{P\left(C \mid B_{2}\right) P\left(B_{2}\right)}{P(C)}=\frac{\frac{56}{90} \cdot 0.2}{\frac{389}{450}}=\frac{56}{389}=0.1440 .
\end{aligned}
$$

Answer: 0.5784; 0.2776; 0.1440 .

