Answer on Question \#62065 - Math - Differential Equations

Question

A mass of 2 kg is fixed to an end of a spring with spring constant $k=128 \mathrm{Nm}-1$ and the system is placed inside a fluid. It is set into vibration from its equilibrium position with an initial speed of 0.6 $\mathrm{ms}-1$. If the damping force due to the fluid is $40 \mathrm{v}(\mathrm{t}) \mathrm{N}$ where v is the instantaneous speed of the mass, determine the position of the mass as a function of time t.

Solution

Using Newton's second law we have:
$m \ddot{x}=-\lambda \dot{x}-k x ;$
$2 \ddot{x}=-40 \dot{x}-128 x ;$
$\ddot{x}+20 \dot{x}+64 x=0 ;$
Now we need to solve characteristic equation:
$\lambda^{2}+20 \lambda+64=0 \Rightarrow \lambda_{1}=-16, \lambda_{2}=-4$.
The general solution of the differential equation (1) is

$$
x(t)=C_{1} e^{-16 t}+C_{2} e^{-4 t}
$$

Now we can use the initial conditions for position and speed:
$x(t=0)=0=C_{1}+C_{2} ;$
$\dot{x}(t=0)=0.6=-16 C_{1}-4 C_{2} ;$
$\left\{\begin{array}{c}C_{1}+C_{2}=0 \\ -16 C_{1}-4 C_{2}=0.6\end{array} \Rightarrow\left\{\begin{array}{c}C_{2}=-C_{1} \\ -16 C_{1}-4 C_{2}=0.6\end{array} \Rightarrow\left\{\begin{array}{c}C_{2}=-C_{1} \\ 16 C_{2}-4 C_{2}=0.6\end{array} \Rightarrow\left\{\begin{array}{c}C_{2}=-C_{1} \\ 12 C_{2}=0.6\end{array} \Rightarrow\right.\right.\right.\right.$
$\left\{\begin{array}{c}C_{2}=-C_{1} \\ C_{2}=0.6 / 12\end{array} \Rightarrow C_{1}=-0.05, C_{2}=0.05 ;\right.$
Position of the mass as a function of time t is

$$
x(t)=-0.05 e^{-16 t}+0.05 e^{-4 t}
$$

Answer: $x(t)=-0.05 e^{-16 t}+0.05 e^{-4 t}$.

