Answer on Question \#62062 - Math - Differential Equations

Question

Solve the initial value problem

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0, y(0)=2, y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

Solution

In this question

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0 \tag{2}
\end{equation*}
$$

is a second order homogeneous equation with constant coefficients.
Characteristic equation is

$$
\begin{gathered}
r^{2}+2 r+2=0 \\
D=2^{2}-4 \cdot 2=-4<0 .
\end{gathered}
$$

Its roots are complex:

$$
r_{1,2}=-1 \pm i .
$$

The general solution of (2) is given by

$$
y=C_{1} e^{-x} \cos x+C_{2} e^{-x} \sin x .
$$

In order to find a particular solution, we use the initial conditions (1) to determine C_{1} and C_{2}.

First, we have
$y(0)=C_{1} e^{0} \cos 0+C_{2} e^{0} \sin 0=C_{1}=2$.
Since
$y^{\prime}(x)=-C_{1} e^{-x} \cos x-C_{1} e^{-x} \sin x-C_{2} e^{-x} \sin x+C_{2} e^{-x} \cos x$,
we get
$y^{\prime}(0)=-C_{1} e^{0} \cos 0-C_{1} e^{0} \sin 0-C_{2} e^{0} \sin 0+C_{2} e^{0} \cos 0=-2+C_{2}=1$;
hence
$C_{2}=3$.
Thus, the solution of the initial value problem (1) is

$$
y=2 e^{-x} \cos x+3 e^{-x} \sin x
$$

Answer: $y=2 e^{-x} \cos x+3 e^{-x} \sin x$.

