Answer on Question #62036 - Math - Vector Calculus Question

For a scalar field

$$\varphi = x^n + y^n + z^n,$$

where n is a non-zero real constant,

show that

$$(\nabla \varphi, \vec{r}) = n\varphi$$

Solution

If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $\varphi = x^n + y^n + z^n$, then

$$\nabla \varphi = \frac{\partial \varphi}{\partial x} \vec{i} + \frac{\partial \varphi}{\partial y} \vec{j} + \frac{\partial \varphi}{\partial z} \vec{k} =$$

$$= \frac{\partial (x^n + y^n + z^n)}{\partial x} \vec{i} + \frac{\partial (x^n + y^n + z^n)}{\partial y} \vec{j} + \frac{\partial (x^n + y^n + z^n)}{\partial z} \vec{k} =$$

$$= nx^{n-1} \vec{i} + ny^{n-1} \vec{j} + nz^{n-1} \vec{k};$$

$$(\nabla \varphi, \vec{r}) = (nx^{n-1}\vec{i} + ny^{n-1}\vec{j} + nz^{n-1}\vec{k}, \quad x\vec{i} + y\vec{j} + z\vec{k}) = = nx^{n-1}x + ny^{n-1}y + nz^{n-1}z = n(x^n + y^n + z^n) = n\varphi.$$