QUESTION 2. Find the number of possible choices for a 2-digit password that is greater than 19. Then find the number of possible choices for a 4-digit Personal Identification Number (PIN) if the digits cannot be repeated.

Solution

1) The number of possible choices for a 2-digit password that is greater than 19:

$$
\left(A_{10}^{2}+10\right)-20=\left(\frac{10!}{(10-2)!}+10\right)-20=\left(\frac{10!}{8!}+10\right)-20=(9 * 10+10)-20=80 .
$$

A_{10}^{2} - permutations without repetitions;
10 - number of $00,11,22,33,44,55,66,77,88,99$;
20 - number of 2-digit password that smaller than 19;
Answer: The number of possible choices for a 2-digit password that is greater than 19 are 80.
2) The number of possible choices for a 4-digit Personal Identification Number (PIN) if the digits cannot be repeated:

$$
A_{10}^{4}=\frac{10!}{(10-4)!}=\frac{10!}{6!}=7 * 8 * 9 * 10=5040 ;
$$

Answer: The number of possible choices for a 4-digit Personal Identification Number (PIN) if the digits cannot be repeated are 5040.

