Solution

Let $x _n$ is in R and suppose that there is an M in R such that $\left|x _n\right|$ less than or equal to M for n in N. Prove that s_n=sup\{x_n, $\left.x_{-}(n+1), \ldots\right\}$ defines a real number for each n in N and that s_1\>s_2\>....
$\exists M, \forall n \in N:\left|x_{n}\right| \leq M$ (comment $M \geq 0$) \Rightarrow
By definition $s=\sup \left\{x_{n} \mid n \in N\right\}$ follows : $-M \leq \sup \left\{x_{n}\right\} \leq M \Rightarrow s \in[-M ; M] \Rightarrow s \in R$ By condition: $s_{r}=\sup \left\{x_{n} \mid n \in N \backslash\{1,2,3, . ., r-1\}\right\}$
But $\forall r \in N: s_{r}=\sup \left\{x_{n} \mid n \in N \backslash\{1,2,3, . ., r-1\}\right\}=s_{r}=\sup \left\{x_{n} \mid n \in(N \backslash\{1,2,3, . ., r\}) \cup\{r\}\right\}=$ $=\sup \left\{s_{r+1} ; x_{r}\right\} \geq \forall n \in N: s_{r+1} \Rightarrow s_{1} \geq s_{2} \geq s_{3} \geq \ldots s_{n} \geq s_{n+1}$

