

Solution

Let x_n is in \mathbb{R} and suppose that there is an M in \mathbb{R} such that $|x_n|$ less than or equal to M for n in \mathbb{N} . Prove that $s_n = \sup\{x_n, x_{(n+1)}, \dots\}$ defines a real number for each n in \mathbb{N} and that $s_1 > s_2 > \dots$

$$\exists M, \forall n \in \mathbb{N} : |x_n| \leq M \text{ (comment } M \geq 0 \text{)} \Rightarrow$$

By definition $s = \sup\{x_n \mid n \in \mathbb{N}\}$ follows: $-M \leq \sup\{x_n\} \leq M \Rightarrow s \in [-M; M] \Rightarrow s \in \mathbb{R}$

By condition: $s_r = \sup\{x_n \mid n \in \mathbb{N} \setminus \{1, 2, 3, \dots, r-1\}\}$

But $\forall r \in \mathbb{N} : s_r = \sup\{x_n \mid n \in \mathbb{N} \setminus \{1, 2, 3, \dots, r-1\}\} = s_r = \sup\{x_n \mid n \in (\mathbb{N} \setminus \{1, 2, 3, \dots, r\}) \cup \{r\}\} = \sup\{s_{r+1}, x_r\} \geq \forall n \in \mathbb{N} : s_{r+1} \Rightarrow s_1 \geq s_2 \geq s_3 \geq \dots s_n \geq s_{n+1}$