SOLUTION

a curve has equation $y=3 x^{\wedge} 2-14 x+5$. the point q lies on the curve and the tangent at q is parallel to the line with equation $y=x-42$. find the x coordinate of q
$\begin{array}{ll}\text { Let them } & l_{1}: y=\boldsymbol{k}_{1} x+b_{1} \\ l_{2}: y=\boldsymbol{k}_{2} x+b_{2}\end{array}$
Lies $l_{1} \| l_{2} \Leftrightarrow k_{1}=k_{2}$
If $y=k x+b$ is a tangent to $\mathrm{y}=3 \mathrm{x}^{\wedge} 2-14 \mathrm{x}+5$ in q then $y=k x+b| | y=1 * x-42 \Rightarrow k=1$
$y^{\prime}=\left(3 x^{2}-14 x+5\right)^{\prime}=6 x-14$
The equation of the tangent to the curve at the point looks like:
$y=f^{\prime}(q) x+\left(f(q)-f^{\prime}(q) q\right)$
$y=k x+b$
$\Rightarrow y=k=1$
$y^{\prime}=6 x-14=1$
$6 x=15 \Rightarrow x=2.5$
ANSVER
The x coordinate of q is $\underline{\underline{2.5}}$

