Answer on Question \#60838 - Math - Algorithms | Quantitative Methods

Question

2. a) Find by Newton's method the roots of the following equations correct to three places of decimals.
i) $\log .4772393 \times 10 x=$ near $x=6$.
ii) $f(x)=x-2 \sin x$ near $x=2$.

Solution

i) By Newton's method

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Write the equation in the form $f(x)=0$:

$$
x \log _{10} x-4.772393=0
$$

Firstly find $f^{\prime}(x)$:

$$
f^{\prime}(x)=\log _{10} x+\frac{1}{\ln 10}
$$

Let's do the first approximation:

$$
\begin{gathered}
f\left(x_{0}\right)=6 \cdot \log _{10} 6-4.772393=-0.103485 \\
f^{\prime}\left(x_{0}\right)=1.212446 \\
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=6-\frac{-0.103485}{1.212446}=6.085352
\end{gathered}
$$

Then do the second approximation:

$$
\begin{gathered}
f\left(x_{0}\right)=6.085352 \cdot \log _{10} 6.085352-4.772393=0.000262 \\
f^{\prime}\left(x_{0}\right)=1.21858 \\
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=6.085352-\frac{0.000262}{1.21858}=6.085136
\end{gathered}
$$

We see that after this approximation first three digits didn't change, so we've got it to three decimal places.

Answer: $x=6.085$.
ii) In the second case we have

$$
f(x)=x-2 \sin x
$$

Similarly do all the operations like in the first one.

Find $f^{\prime}(x)$:

$$
f^{\prime}(x)=1-2 \cos x
$$

First approximation:

$$
\begin{gathered}
f\left(x_{0}\right)=f(2)=2-2 \sin 2=0.181405 \\
f^{\prime}\left(x_{0}\right)=1-2 \cos 2=1.832294 \\
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=2-\frac{0.181405}{1.832294}=1.900996
\end{gathered}
$$

Second approximation:

$$
\begin{gathered}
f\left(x_{1}\right)=1.900996-2 \cdot \sin 1.900996=0.009041 \\
f^{\prime}\left(x_{1}\right)=1-2 \cdot \cos 1.900996=1.648464 \\
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1.900996-\frac{0.009041}{1.648464}=1.895511
\end{gathered}
$$

Third approximation:

$$
\begin{gathered}
f\left(x_{2}\right)=1.895511-2 \cdot \sin 1.895511=0.000027 \\
f^{\prime}\left(x_{2}\right)=1-2 \cdot \cos 1.895511=1.638077 \\
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=1.895511-\frac{0.000027}{1.638077}=1.895495
\end{gathered}
$$

After three approximations we estimate the answer to three places of decimals. Answer: $x=1.895$.

