Answer on Question \#60763 - Math - Algebra

Question

Right now dealing with transformations of sine and cosine functions. Here's the equation I'm stumped on:
$\mathrm{F}(\mathrm{x})=3 \cos (4 \mathrm{pix}-(\mathrm{pi} / 2))-2$
I'm trying to put this into the form:
$\mathrm{A} \cos [\mathrm{B}(\mathrm{x}-\mathrm{C})]+\mathrm{D}$
But I can't figure out how to factor the
(4 pix-(pi/2)) into the form $[\mathrm{B}(\mathrm{x}-\mathrm{C})]$.
I'm confused because if B is 4 pi, and the period is ($2 \mathrm{pi} / \mathrm{B}$), wouldn't I end up with a pi-less period?
I haven't encountered that yet.
Also, if the phase shift is C/B, wouldn't I also end up with a pi-less phase shift?

Solution

We have got an expression

$$
F(x)=3 \cos \left(4 \pi x-\frac{\pi}{2}\right)-2 .
$$

Let's rewrite it in other form.
First of all,

$$
\cos \left(4 \pi x-\frac{\pi}{2}\right)=\cos \left(-\left(\frac{\pi}{2}-4 \pi x\right)\right)=\cos \left(\frac{\pi}{2}-4 \pi x\right)=\sin (4 \pi x) .
$$

So, we have

$$
F(x)=3 \cos \left(4 \pi x-\frac{\pi}{2}\right)-2=3 \sin (4 \pi x)-2 .
$$

The graph of $\mathrm{F}(\mathrm{x})$ is given below.

The period of $\sin (4 \pi x), 3 \sin (4 \pi x), 3 \sin (4 \pi x)-2$ is $\frac{2 \pi}{4 \pi}=\frac{1}{2}$, hence the period of $\cos \left(4 \pi x-\frac{\pi}{2}\right)$, $3 \cos \left(4 \pi x-\frac{\pi}{2}\right)-2$ will also be $\frac{2 \pi}{4 \pi}=\frac{1}{2}$. You will end up with a pi-less period. Also, if the phase shift is C/B, you will end up with a pi-less phase shift and it's Ok.

