Answer on Question \#60736 - Math - Algebra

Question

1. Write the quadratic expression $x^{\wedge} 2-24 x-12$ in completed square form.

Solution

It is known that

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

Consider

$$
\begin{aligned}
& \quad x^{2}-24 x-12=x^{2}-2 \cdot 12 x+12^{2}-12^{2}-12=\left(x^{2}-2 \cdot 12 x+12^{2}\right)-12^{2}-12= \\
& =(x-12)^{2}-12^{2}-12=(x-12)^{2}-156 .
\end{aligned}
$$

Question

2. Use the completed square form from above to solve the equation $x^{\wedge} 2-24 x-12=0$, leaving your answer in exact (surd) form.

Solution

It was found in part 1 that the completed square form of the quadratic expression $x^{2}-24 x-12$ is $(x-12)^{2}-156$.

Then
$x^{2}-24 x-12=0 \rightarrow(x-12)^{2}-156=0 \rightarrow(x-12)^{2}=156 \rightarrow x-12= \pm \sqrt{156} \rightarrow$ $\rightarrow x-12= \pm 2 \sqrt{39} \rightarrow x=12 \pm 2 \sqrt{39}$.

Hence solutions of the equation $x^{2}-24 x-12=0$ are

$$
\begin{aligned}
& x_{1}=12-2 \sqrt{39} \\
& x_{2}=12+2 \sqrt{39}
\end{aligned}
$$

Question

3. Use the completed square form from part 1 to write down the vertex of the parabola $y=x^{\wedge} 2-24 x-12$.

Solution

The completed square form is

$$
y=(x-12)^{2}-156
$$

So, the vertex of the parabola is $(12,-156)$.

