Answer on Question \#60657 - Math - Algebra

Question

If $2-\mathrm{i}$ is a solution of the equation $\mathrm{x}^{\wedge} 2-4 \mathrm{x}+\mathrm{k}=0$, what is the value of k ?

Given:

$x^{2}-4 x+k=0$
$x=2-i$

Find:

k

Solution:

First method

$D=4^{2}-4 k=16-4 k$
$x=\frac{4 \pm \sqrt{D}}{2}=\frac{4 \pm \sqrt{16-4 k}}{2}=2 \pm \sqrt{4-k}$
If $x=2-i$ is a solution of the equation $x^{2}-4 x+k=0$, then
$2 \pm \sqrt{4-k}=2-i$
$\Rightarrow \pm \sqrt{4-k}=-i$
$\Rightarrow 4-k=i^{2}$
$\Rightarrow 4-k=-1$
$\Rightarrow \quad k=5$

Second method

According to Vieta's formulas for a second-degree polynomial,
$\left\{\begin{array}{c}x_{1}+x_{2}=4, \\ x_{1} x_{2}=k,\end{array}\right.$
where x_{1}, x_{2} are the solutions of the equation $x^{2}-4 x+k=0$.
It is given that $x_{1}=2-i$.
It follows from the first equation of the system (1) that $x_{2}=4-x_{1}=4-(2-i)=2+i$.
It follows from the second equation of the system (1) that $k=x_{1} x_{2}=(2-i)(2+i)=2^{2}-i^{2}=4-(-1)=5$

Answer: $k=5$.

