Answer on Question \#60635 - Math - Algebra

Question

Expand the brackets in the expression $(5-3 \mathrm{t})(5+3 \mathrm{t})$
What is the coefficient of t^{2} ?
What is the coefficient of t ?
What is the constant term?

Solution

The first objective of the task is to expand the brackets in the expression

$$
(5-3 t)(5+3 t)
$$

We multiply two expressions term by term:

$$
(5-3 t)(5+3 t)=5 \cdot 5+5 \cdot 3 t-3 t \cdot 5-3 t \cdot 3 t=25+15 t-15 t-9 t^{2}
$$

Then we need to simplify the obtained formula by combining like terms:

$$
25+15 t-15 t-9 t^{2}=25-9 t^{2}
$$

Based on the result, the coefficient of t^{2} is equal to -9 , the coefficient of t is equal to 0 , the constant term is 25 .

The equation containing a single variable of degree 2 can be represented in the general form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, where x is the variable and a, b, and c are constants ($a \neq 0$). In our case, the coefficient a is equal to -9 , the coefficient b is equal to 0 and the coefficient c is equal to 25 .

Answer: $25-9 \mathrm{t}^{2} ;-9 ; 0 ; 25$.

