Problem. Find derivative of each function using first principles (use definition) and then evaluate the slope of the tangent line at the given point. $y(x)=\frac{x}{x-1}$, the point is $(-3,3 / 4)$.
Solution. $y=\frac{x-1+1}{x-1}=1+\frac{1}{x-1}$. So $y^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{y(x+\Delta x)-y(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{1}{x+\Delta x-1}-\frac{1}{x-1}}{\Delta x}=$ $\lim _{\Delta x \rightarrow 0} \frac{-\Delta x}{(x+\Delta x-1)(x-1) \Delta x}=-\frac{1}{(x-1)^{2}}$. The slope of the tangent line at the point $(-3,3 / 4)$ equals to $y^{\prime}(-3)=-1 / 16$.
Answer. $y^{\prime}(x)=-\frac{1}{(x-1)^{2}}$, the slope of the tangent line at point $(-3,3 / 4)$ equals to $-1 / 16$.

