

Newton's method

Given a function f defined over the reals x , and its derivative f' , we begin with a first guess x_0 for a root of the function f . Provided the function is reasonably well-behaved a better approximation x_1 is

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Geometrically, $(x_1, 0)$ is the intersection with the x -axis of a line tangent to f at $(x_0, f(x_0))$.

The process is repeated as

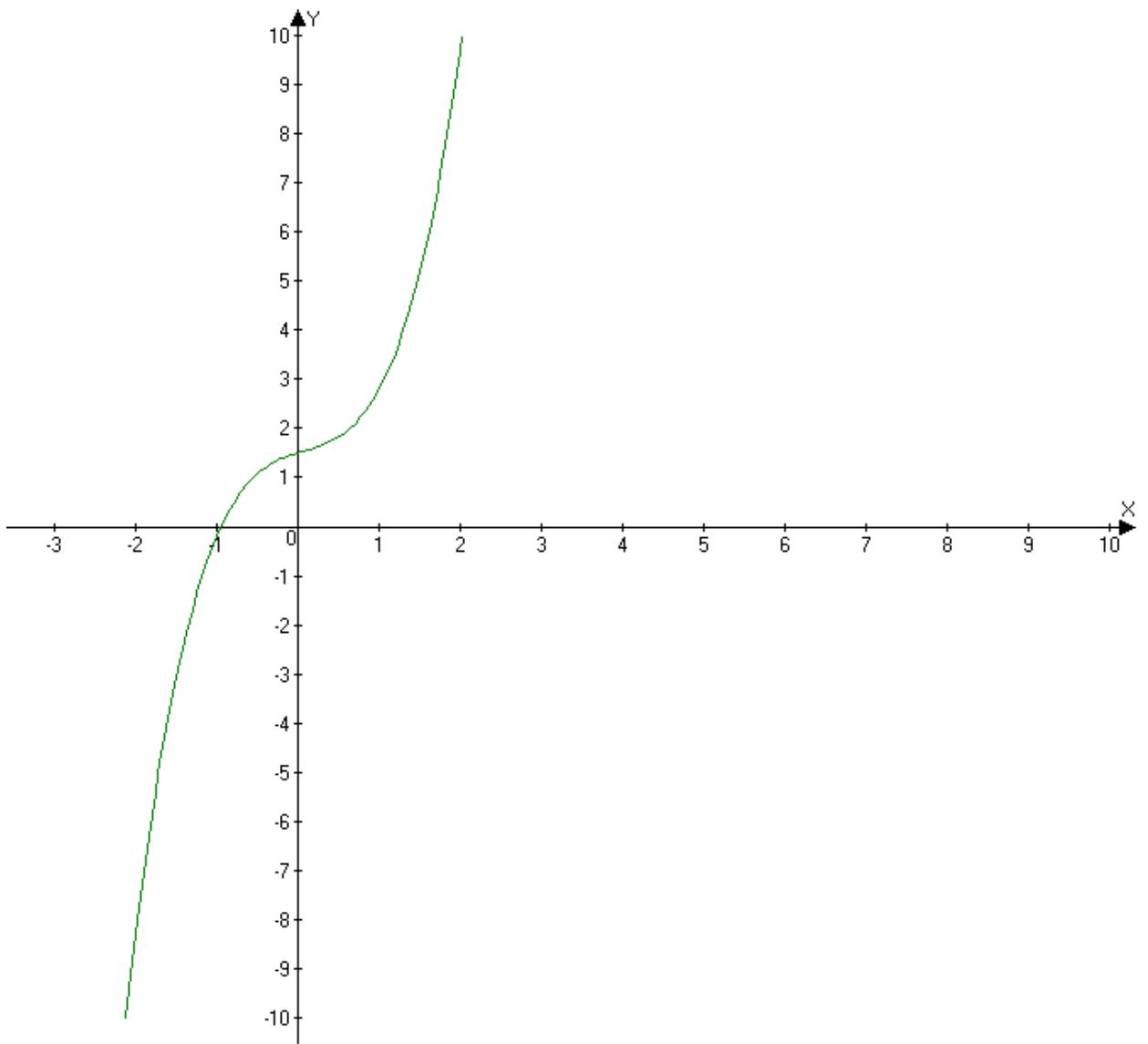
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

until a sufficiently accurate value is reached.

Example:

Given the equation: $x^3 - 0,2x^2 + 0,5x + 1,5 = 0$. Clarify the root with an error $\varepsilon < 0,001$ (error, you can choose yourself if nothing is specified in the problem at this point).

$$f(x) = x^3 - 0,2x^2 + 0,5x + 1,5.$$



root is in the range $[-1; 0]$, $a = -1$, $b = 0$.

$$f(-1) = -1 - 0,2 - 0,5 + 1,5 = -0,2 < 0;$$

$$f(0) = 1,5 > 0.$$

Find the first derivative: $f'(x) = 3x^2 - 0,4x + 0,5$.

Find the second derivative: $f''(x) = 6x - 0,4$.

$$f''(-1) = -6 - 0,4 = -6,4 < 0;$$

$$f''(0) = -0,4 = -0,4 < 0.$$

At the end of a segment $[a, b]$ satisfies the condition $f(-1) f''(-1) > 0$, so we take the initial approximation $x_0 = -1$, and the calculation will be carried out by the formula

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}.$$

pre find $f'(x_0) = 3(-1)^2 - 0,4(-1) + 0,5 = 3,9$.

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = -1 - \frac{-0.2}{3.9} = -0.9487$$

$$x_2 = -0.9466$$

$$x_3 = -0.9464$$

If $|x_{i+1} - x_i| \leq \varepsilon$, then we have reached the desired accuracy.

$$|x_3 - x_2| \leq 0.001$$

$0.0002 \leq 0.001$ we have achieved the desired accuracy.

The results of calculations by Newton's method

i	x_i	$f(x_i)$
0	-1	-0,2000
1	-0,9487	-0,0083
2	-0,9466	-0,0007
3	-0,9464	-0,0001

Answer: $x \approx -0,9464$.