Answer on Question \#60140 - Math - Algebra

Question

A rural population (given in thousands) is thought to decline according to the equation $\mathrm{p}=15 \mathrm{e}^{\wedge}(-0.1 \mathrm{t})$. if $\mathrm{t}=0$ at the beginning of 1998.

1) calculate the numbers in the population at the beginning of 1990,2000,2016;
2) graph population up to 2050;
3) calculate the number of years it will take for the population to decline to 10000 .

Solution

1) 1990: $p(-8)=15 e^{-0.1 *(-8)}=15 e^{0.8}=33.383$ (in thousands);

2000: $p(2)=15 e^{-0.1 * 2}=15 e^{-0.2}=12.281$ (in thousands);
2016: $p(18)=15 e^{-0.1 * 18}=15 e^{-1.8}=2.479$ (in thousands).

2)

3) $15 e^{-0.1 t}=10 \rightarrow t=-10 \ln \frac{10}{15} \approx 4$ (years).

