Answer on Question \#59763 - Math - Algebra

Write the first 5 terms of the following sequences

Question

1. $a_{1}=4$,
$a_{n}=a_{n-1}+4$.

Solution

Method 1

Given
$a_{1}=4$.
Putting $n=2$ in the formula $a_{n}=a_{n-1}+4$ gives
$a_{2}=a_{1}+4=4+4=8$,
putting $n=3$ in the formula $a_{n}=a_{n-1}+4$ gives
$a_{3}=a_{2}+4=8+4=12$,
putting $n=4$ in the formula $a_{n}=a_{n-1}+4$ gives
$a_{4}=a_{3}+4=12+4=16$,
putting $n=5$ in the formula $a_{n}=a_{n-1}+4$ gives
$a_{5}=a_{4}+4=16+4=20$.

Method 2

By definition, an arithmetic progression is a sequence of numbers such that the difference between the current term and the preceding term is the same for any two consecutive terms.

It follows from $a_{n}=a_{n-1}+4$ that the common difference

$$
d=a_{n}-a_{n-1}=4
$$

is the constant value of the difference between the current and the preceding consecutive terms of the arithmetic progression.

Formula for the n-th term is

$$
a_{n}=a_{1}+(n-1) d
$$

where $a_{1}=4, d=4$.
Given $a_{1}=4$.

According to the formula for the n-th term,
$a_{2}=a_{1}+(2-1) d=a_{1}+d=4+4=8$,
$a_{3}=a_{1}+(3-1) d=a_{1}+2 d=4+2 \cdot 4=12$,
$a_{4}=a_{1}+(4-1) d=a_{1}+3 d=4+3 \cdot 4=16$,
$a_{5}=a_{1}+(5-1) d=a_{1}+4 d=4+4 \cdot 4=20$.

Answer:

$a_{1}=4$,
$a_{2}=8$,
$a_{3}=12$,
$a_{4}=16$,
$a_{5}=20$.

Question

2. $a_{1}=-1$,
$a_{n}=a_{n-1}-2$.

Solution

Method 1

Given
$a_{1}=-1$.
Putting $n=2$ in the formula $a_{n}=a_{n-1}-2$ gives
$a_{2}=a_{1}-2=-1-2=-3$,
putting $n=3$ in the formula $a_{n}=a_{n-1}-2$ gives
$a_{3}=a_{2}-2=-3-2=-5$,
putting $n=4$ in the formula $a_{n}=a_{n-1}-2$ gives
$a_{4}=a_{3}-2=-5-2=-7$,
putting $n=5$ in the formula $a_{n}=a_{n-1}-2$ gives
$a_{5}=a_{4}-2=-7-2=-9$.

Method 2

By definition, an arithmetic progression is a sequence of numbers such that the difference between the current term and the preceding term is the same for any two consecutive terms.

It follows from $a_{n}=a_{n-1}-2$ that the common difference

$$
d=a_{n}-a_{n-1}=-2
$$

is the constant value of the difference between the current and the preceding consecutive terms of the arithmetic progression.

Formula for the n-th term is

$$
a_{n}=a_{1}+(n-1) d
$$

where $a_{1}=-1, d=-2$.
Given
$a_{1}=-1$.
According to the formula for the n-th term,

$$
\begin{aligned}
& a_{2}=a_{1}+(2-1) d=a_{1}+d=-1-2=-3, \\
& a_{3}=a_{1}+(3-1) d=a_{1}+2 d=-1+2 \cdot(-2)=-5, \\
& a_{4}=a_{1}+(4-1) d=a_{1}+3 d=-1+3 \cdot(-2)=-7, \\
& a_{5}=a_{1}+(5-1) d=a_{1}+4 d=-1+4 \cdot(-2)=-9 .
\end{aligned}
$$

Answer:

$$
\begin{aligned}
& a_{1}=-1, \\
& a_{2}=-3, \\
& a_{3}=-5, \\
& a_{4}=-7, \\
& a_{5}=-9 .
\end{aligned}
$$

Question

$$
\text { 3. } \begin{aligned}
a_{1} & =0.25 \\
a_{n} & =a_{n-1}+0.5 .
\end{aligned}
$$

Solution

Method 1

Given
$a_{1}=0.25$.
Putting $n=2$ in formula $a_{n}=a_{n-1}+0.5$ gives
$a_{2}=a_{1}+0.5=0.25+0.5=0.75$,
putting $n=3$ in formula $a_{n}=a_{n-1}+0.5$ gives
$a_{3}=a_{2}+0.5=0.75+0.5=1.25$,
putting $n=4$ in formula $a_{n}=a_{n-1}+0.5$ gives
$a_{4}=a_{3}+0.5=1.25+0.5=1.75$,
putting $n=5$ in formula $a_{n}=a_{n-1}+0.5$ gives
$a_{5}=a_{4}+0.5=1.75+0.5=2.25$.

Method 2

By definition, an arithmetic progression is a sequence of numbers such that the difference between the current term and the preceding term is the same for any two consecutive terms.

It follows from $a_{n}=a_{n-1}+0.5$ that the common difference

$$
d=a_{n}-a_{n-1}=0.5
$$

is the constant value of the difference between the current and the preceding consecutive terms of the arithmetic progression.

Formula for the n-th term is

$$
a_{n}=a_{1}+(n-1) d,
$$

where $a_{1}=0.25, d=0.5$.
Given
$a_{1}=0.25$.
According to the formula for the n-th term,
$a_{2}=a_{1}+(2-1) d=a_{1}+d=0.25+0.5=0.75$,

$$
\begin{aligned}
& a_{3}=a_{1}+(3-1) d=a_{1}+2 d=0.25+2 \cdot 0.5=1.25, \\
& a_{4}=a_{1}+(4-1) d=a_{1}+3 d=0.25+3 \cdot 0.5=1.75, \\
& a_{5}=a_{1}+(5-1) d=a_{1}+4 d=0.25+4 \cdot 0.5=2.25 .
\end{aligned}
$$

Answer:

$a_{1}=0.25$,
$a_{2}=0.75$,
$a_{3}=1.25$,
$a_{4}=1.75$,
$a_{5}=2.25$.

Question

$$
\text { 4. } \begin{aligned}
a_{1} & =1 \\
a_{n} & =n \cdot a_{n-1} .
\end{aligned}
$$

Solution

Method 1

Given
$a_{1}=1$,
putting $n=2$ in formula $a_{n}=n \cdot a_{n-1}$ gives
$a_{2}=2 \cdot a_{1}=2 \cdot 1=2$,
putting $n=3$ in formula $a_{n}=n \cdot a_{n-1}$ gives
$a_{3}=3 \cdot a_{2}=3 \cdot 2=6$,
putting $n=4$ in formula $a_{n}=n \cdot a_{n-1}$ gives
$a_{4}=4 \cdot a_{3}=4 \cdot 6=24$,
putting $n=5$ in formula $a_{n}=n \cdot a_{n-1}$ gives
$a_{5}=5 \cdot a_{4}=5 \cdot 24=120$.

Method 2

Given
$a_{1}=1$.
Consider

$$
a_{n}=n \cdot a_{n-1}=n \cdot\left((n-1) \cdot a_{n-2}\right)=n(n-1) a_{n-2}=n(n-1) \cdot\left((n-2) \cdot a_{n-3}\right)=
$$

$$
\begin{gathered}
=n(n-1)(n-2) a_{n-3}=\cdots=n(n-1)(n-2) \ldots(n-(n-2)) a_{n-(n-1)}= \\
=n(n-1)(n-2) \ldots 2 a_{1}=n(n-1)(n-2) \ldots 2 \cdot 1=n!
\end{gathered}
$$

according to the definition of factorial.
Then using the formula $a_{n}=n$! for the n-th term compute
$a_{2}=2!=1 \cdot 2=2$,
$a_{3}=3!=1 \cdot 2 \cdot 3=6$,
$a_{4}=4!=1 \cdot 2 \cdot 3 \cdot 4=24$,
$a_{5}=5!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=120$.

Answer:

$$
\begin{aligned}
& a_{1}=1, \\
& a_{2}=2, \\
& a_{3}=6, \\
& a_{4}=24, \\
& a_{5}=120 .
\end{aligned}
$$

