Answer on Question #59763 – Math – Algebra

Write the first 5 terms of the following sequences

Question

1. $a_1 = 4$, $a_n = a_{n-1} + 4$.

Solution

Method 1

Given

 $a_1 = 4$.

Putting n = 2 in the formula $a_n = a_{n-1} + 4$ gives

 $a_2 = a_1 + 4 = 4 + 4 = 8$,

putting n = 3 in the formula $a_n = a_{n-1} + 4$ gives

 $a_3 = a_2 + 4 = 8 + 4 = 12$,

putting n = 4 in the formula $a_n = a_{n-1} + 4$ gives

 $a_4 = a_3 + 4 = 12 + 4 = 16$,

putting n = 5 in the formula $a_n = a_{n-1} + 4$ gives

 $a_5 = a_4 + 4 = 16 + 4 = 20.$

Method 2

By definition, an arithmetic progression is a sequence of numbers such that the difference between the current term and the preceding term is the same for any two consecutive terms.

It follows from $a_n = a_{n-1} + 4$ that the common difference

$$d = a_n - a_{n-1} = 4$$

is the constant value of the difference between the current and the preceding consecutive terms of the arithmetic progression.

Formula for the *n*-th term is

$$a_n = a_1 + (n-1)d,$$

where $a_1 = 4, d = 4$.

Given $a_1 = 4$.

According to the formula for the n-th term,

$$a_{2} = a_{1} + (2 - 1)d = a_{1} + d = 4 + 4 = 8,$$

$$a_{3} = a_{1} + (3 - 1)d = a_{1} + 2d = 4 + 2 \cdot 4 = 12,$$

$$a_{4} = a_{1} + (4 - 1)d = a_{1} + 3d = 4 + 3 \cdot 4 = 16,$$

$$a_{5} = a_{1} + (5 - 1)d = a_{1} + 4d = 4 + 4 \cdot 4 = 20.$$

Answer:

 $a_1 = 4,$ $a_2 = 8,$ $a_3 = 12,$ $a_4 = 16,$ $a_5 = 20.$

Question

2. $a_1 = -1$, $a_n = a_{n-1} - 2$.

Solution

Method 1

Given

 $a_1 = -1.$

Putting n = 2 in the formula $a_n = a_{n-1} - 2$ gives

 $a_2 = a_1 - 2 = -1 - 2 = -3,$

putting n = 3 in the formula $a_n = a_{n-1} - 2$ gives

 $a_3 = a_2 - 2 = -3 - 2 = -5,$

putting n = 4 in the formula $a_n = a_{n-1} - 2$ gives

 $a_4 = a_3 - 2 = -5 - 2 = -7,$

putting n = 5 in the formula $a_n = a_{n-1} - 2$ gives

 $a_5 = a_4 - 2 = -7 - 2 = -9.$

Method 2

By definition, an arithmetic progression is a sequence of numbers such that the difference between the current term and the preceding term is the same for any two consecutive terms.

It follows from $a_n = a_{n-1} - 2$ that the common difference

$$d = a_n - a_{n-1} = -2$$

is the constant value of the difference between the current and the preceding consecutive terms of the arithmetic progression.

Formula for the *n*-th term is

$$a_n = a_1 + (n-1)d,$$

where $a_1 = -1$, d = -2.

Given

 $a_1 = -1.$

According to the formula for the *n*-th term,

$$a_{2} = a_{1} + (2 - 1)d = a_{1} + d = -1 - 2 = -3,$$

$$a_{3} = a_{1} + (3 - 1)d = a_{1} + 2d = -1 + 2 \cdot (-2) = -5,$$

$$a_{4} = a_{1} + (4 - 1)d = a_{1} + 3d = -1 + 3 \cdot (-2) = -7,$$

$$a_{5} = a_{1} + (5 - 1)d = a_{1} + 4d = -1 + 4 \cdot (-2) = -9.$$

Answer:

$$a_1 = -1,$$

 $a_2 = -3,$
 $a_3 = -5,$
 $a_4 = -7,$
 $a_5 = -9.$

3. $a_1 = 0.25$, $a_n = a_{n-1} + 0.5$.

Solution

Method 1

Given

 $a_1 = 0.25.$

Putting n = 2 in formula $a_n = a_{n-1} + 0.5$ gives

 $a_2 = a_1 + 0.5 = 0.25 + 0.5 = 0.75,$

putting n = 3 in formula $a_n = a_{n-1} + 0.5$ gives

 $a_3 = a_2 + 0.5 = 0.75 + 0.5 = 1.25,$

putting n = 4 in formula $a_n = a_{n-1} + 0.5$ gives

 $a_4 = a_3 + 0.5 = 1.25 + 0.5 = 1.75,$

putting n = 5 in formula $a_n = a_{n-1} + 0.5$ gives

 $a_5 = a_4 + 0.5 = 1.75 + 0.5 = 2.25.$

Method 2

By definition, an arithmetic progression is a sequence of numbers such that the difference between the current term and the preceding term is the same for any two consecutive terms.

It follows from $a_n = a_{n-1} + 0.5$ that the common difference

$$d = a_n - a_{n-1} = 0.5$$

is the constant value of the difference between the current and the preceding consecutive terms of the arithmetic progression.

Formula for the *n*-th term is

$$a_n = a_1 + (n-1)d,$$

where $a_1 = 0.25$, d = 0.5.

Given

 $a_1 = 0.25.$

According to the formula for the *n*-th term,

 $a_2 = a_1 + (2 - 1)d = a_1 + d = 0.25 + 0.5 = 0.75,$

 $a_3 = a_1 + (3 - 1)d = a_1 + 2d = 0.25 + 2 \cdot 0.5 = 1.25,$ $a_4 = a_1 + (4 - 1)d = a_1 + 3d = 0.25 + 3 \cdot 0.5 = 1.75,$ $a_5 = a_1 + (5 - 1)d = a_1 + 4d = 0.25 + 4 \cdot 0.5 = 2.25.$ Answer: $a_1 = 0.25,$

 $a_2 = 0.75,$ $a_3 = 1.25,$ $a_4 = 1.75,$ $a_5 = 2.25.$

Question

4. $a_1 = 1$, $a_n = n \cdot a_{n-1}$.

Solution

Method 1

Given

 $a_1 = 1$,

putting n = 2 in formula $a_n = n \cdot a_{n-1}$ gives

 $a_2 = 2 \cdot a_1 = 2 \cdot 1 = 2$,

putting n = 3 in formula $a_n = n \cdot a_{n-1}$ gives

 $a_3 = 3 \cdot a_2 = 3 \cdot 2 = 6$,

putting n = 4 in formula $a_n = n \cdot a_{n-1}$ gives

 $a_4 = 4 \cdot a_3 = 4 \cdot 6 = 24$,

putting n = 5 in formula $a_n = n \cdot a_{n-1}$ gives

 $a_5 = 5 \cdot a_4 = 5 \cdot 24 = 120.$

Method 2

Given

 $a_1 = 1.$

Consider

$$a_n = n \cdot a_{n-1} = n \cdot ((n-1) \cdot a_{n-2}) = n(n-1)a_{n-2} = n(n-1) \cdot ((n-2) \cdot a_{n-3}) =$$

= $n(n-1)(n-2)a_{n-3} = \dots = n(n-1)(n-2) \dots (n-(n-2))a_{n-(n-1)} =$
= $n(n-1)(n-2) \dots 2a_1 = n(n-1)(n-2) \dots 2 \cdot 1 = n!$

according to the definition of factorial.

Then using the formula $a_n = n!$ for the *n*-th term compute

$$a_{2} = 2! = 1 \cdot 2 = 2,$$

$$a_{3} = 3! = 1 \cdot 2 \cdot 3 = 6,$$

$$a_{4} = 4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24,$$

$$a_{5} = 5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120.$$

Answer:

$$a_1 = 1,$$

 $a_2 = 2,$
 $a_3 = 6,$
 $a_4 = 24,$
 $a_5 = 120.$

www.AssignmentExpert.com