Answer on Question #58504 – Math – Combinatorics | Number Theory

Question

Suppose a prime can be written as $p = x^2 + 5y^2$. Show that $p \equiv 1$ or 9 (mod 20). Assume that p > 5.

Solution

Because p is a prime, p cannot be even, hence p is odd.

We may assume that p is an odd prime, greater than 5. Because $p = x^2 + 5y^2$ is odd, one of x^2 , y^2 is odd, and the other is even.

Reducing $p = x^2 + 5y^2 \mod 5$, we see $p = x^2 \pmod{5}$, so p is a quadratic residue mod 5 and thus p = 1 or 4 (mod 5).

Reducing $p = x^2 + 5y^2 \mod 4$, we see $p = x^2 + y^2 \pmod{4}$, so p is a sum of two quadratic residues mod 4.

Since the quadratic residues mod 4 are 0 and 1, this rules out the possibility that $p=3 \pmod{4}$. Besides, $p=0 \pmod{4}$, $p=2 \pmod{4}$ are excluded, because p is odd.

So p = 1 or 4 (mod 5) and $p = 1 \pmod{4}$, which means that p = 1 or 9 (mod 20). Check it.

Let

$$p = 1 + 4k$$
 and $p = 1 + 5l$ or $p = 4 + 5m$.

Suppose that p = 1+4k and p = 1+5l. Then 1+4k = 1+5l, 4k = 5l, hence k = 5t, l = 4u. This means that $p = 1+4k = 1+4 \cdot 5t = 1+20t$, $p = 1+5l = 1+5 \cdot 4u = 1+20u$. Finally obtain $p = 1 \pmod{20}$.

Suppose that p = 1 + 4k and p = 4 + 5m. Then 1 + 4k = 4 + 5m, 4k - 4 - 4m = m - 1, 4n = m - 1, hence m = 4n + 1. This means that $p = 4 + 5m = 4 + 5 \cdot (4n + 1) = 4 + 20n + 5 = 9 + 20n$. Finally obtain $p = 9 \pmod{20}$.

Given p = 1 or 4 (mod 5) and $p = 1 \pmod{4}$, we came to p = 1 or 9 (mod 20), which was to be proved.

www.AssignmentExpert.com