Answer on Question \#58504 - Math - Combinatorics | Number Theory Question

Suppose a prime can be written as $p=x^{\wedge} 2+5 y^{\wedge} 2$. Show that $p \equiv 1 \operatorname{or} 9(\bmod 20)$.
Assume that $p>5$.

Solution

Because p is a prime, p cannot be even, hence p is odd.
We may assume that p is an odd prime, greater than 5. Because $p=x^{2}+5 y^{2}$ is odd, one of x^{2}, y^{2} is odd, and the other is even.

Reducing $p=x^{2}+5 y^{2} \bmod 5$, we see $p=x^{2}(\bmod 5)$, so p is a quadratic residue $\bmod 5$ and thus $p=1$ or $4(\bmod 5)$.

Reducing $p=x^{2}+5 y^{2} \bmod 4$, we see $p=x^{2}+y^{2}(\bmod 4)$, so p is a sum of two quadratic residues $\bmod 4$.
Since the quadratic residues $\bmod 4$ are 0 and 1 , this rules out the possibility that $p=3(\bmod 4)$. Besides, $p=0(\bmod 4), p=2(\bmod 4)$ are excluded, because p is odd.

So $p=1$ or $4(\bmod 5)$ and $p=1(\bmod 4)$, which means that $p=1$ or $9(\bmod 20)$. Check it.

Let

$$
p=1+4 k \text { and } p=1+5 l \text { or } p=4+5 m .
$$

Suppose that $p=1+4 k$ and $p=1+5 l$.
Then $1+4 k=1+5 l, \quad 4 k=5 l$, hence $k=5 t, l=4 u$.
This means that $p=1+4 k=1+4 \cdot 5 t=1+20 t, p=1+5 l=1+5 \cdot 4 u=1+20 u$.
Finally obtain $p=1(\bmod 20)$.
Suppose that $p=1+4 k$ and $p=4+5 m$.
Then $1+4 k=4+5 m, 4 k-4-4 m=m-1,4 n=m-1$, hence $m=4 n+1$.
This means that $p=4+5 m=4+5 \cdot(4 n+1)=4+20 n+5=9+20 n$.
Finally obtain $p=9(\bmod 20)$.
Given $p=1$ or $4(\bmod 5)$ and $p=1(\bmod 4)$, we came to $p=1$ or $9(\bmod 20)$, which was to be proved.

