Question

1. $\varphi = 2xz^4 - x^2y$ Find $|\nabla \vec{\varphi}|$ at some point.

Solution

$$\nabla \vec{\varphi} = \frac{\partial \varphi}{\partial x} \vec{i} + \frac{\partial \varphi}{\partial y} \vec{j} + \frac{\partial \varphi}{\partial z} \vec{k} = (2z^4 - 2xy)\vec{i} - x^2\vec{j} + 8xz^3\vec{k}$$

$$|\nabla \vec{\varphi}| = \sqrt{(2z^4 - 2xy)^2 + x^4 + 64x^2z^6}$$
Point (x, y, z) was not specified

Point (x, y, z) was not specified.

Question

2. $\varphi = 3x^2y - y^3z^2$ Find $\nabla \vec{\varphi}$ at point (1;-2;-1)

Solution $\nabla \vec{\varphi} = \frac{\partial \varphi}{\partial x}\vec{i} + \frac{\partial \varphi}{\partial y}\vec{j} + \frac{\partial \varphi}{\partial z}\vec{k} = 6xy\vec{i} + (3x^2 - 3y^2z^2)\vec{j} - 2zy^3\vec{k}$ Then we put point's coordinates in the previous expression:

 $\nabla \vec{\varphi}(1; -2; -1) = -12\vec{\imath} - 9\vec{\jmath} - 16\vec{k}$

Answer: $\nabla \vec{\varphi}(1; -2; -1) = -12\vec{\iota} - 9\vec{j} - 16\vec{k}$. Question

3. Find unit normal to a surface: $x^2y + 2xz = 4$ at a point (2;-2;3)

Solution First, we rewrite the surface equation in the form of F(x,y,z)=0. $x^2y + 2xz - 4 = 0$.

A normal to a surface can be found as $(F'_x(A); F'_y(A); F'_z(A))$, where A is the point (2;-2;3). $F'_x(A) = 2xy + 2z = -4$

$$F'_{y}(A) = x^{2} = 4$$

 $F'_{z}(A) = 2x = 4$

Vector is (-4;4;4) or (23;-23;-23).

Answer: (-4;4;4) or (23;-23;-23).

Question

4.
$$\varphi = xy^2 z \ \vec{A} = xz\vec{\iota} - xy^2\vec{j} + yz^2\vec{k}$$
. Find $\frac{\partial^3 \varphi \vec{A}}{\partial x^2 \partial z}$.

Solution

$$\varphi \vec{A} = x^2 y^2 z^2 \vec{\iota} - x^2 y^4 z \vec{j} + x y^3 z^3 \vec{k}$$

$$\frac{\partial^3(\varphi\vec{A})}{\partial x^2 \partial z} = \frac{\partial^2 \frac{\partial(\varphi\vec{A})}{\partial z}}{\partial x^2} = \frac{\partial^2 (2x^2 y^2 z\vec{\iota} - x^2 y^4 \vec{j} + 3xy^3 z^2 \vec{k})}{\partial x^2} = 4y^2 z\vec{\iota} - 2y^4 \vec{j}$$

Answer should be based on point (not given in task), but most appropriate from answers given: $\frac{\partial^3(\varphi \vec{A})}{\partial x^2 \partial z} = 4y^2 z \vec{i} - 2y^4 \vec{j} = 4\vec{i} - 2\vec{j}.$

Question

5. $\varphi = 2x^2y - xz^3$. Find $\nabla^2 \vec{\varphi}$. Solution $\nabla \vec{\varphi} = \frac{\partial \varphi}{\partial x} \vec{i} + \frac{\partial \varphi}{\partial y} \vec{j} + \frac{\partial \varphi}{\partial z} \vec{k} = (4xy - z^3)\vec{i} + 2x^2\vec{j} - 3xz^2\vec{k}$, $\nabla^2 \vec{\varphi} = 16x^2y^2 + z^6 - 8xyz^3 + 4x^4 + 9x^2z^4$ Answer: $\nabla^2 \vec{\varphi} = 16x^2y^2 + z^6 - 8xyz^3 + 4x^4 + 9x^2z^4$

Question

6.
$$\vec{A} = xz^{3}\vec{\iota} - 2x^{2}yz\vec{j} + 2yz\vec{k}$$
. Find $[\nabla * \vec{A}]$ at point (1;-1;1).

Solution

 $\begin{bmatrix} \nabla * \vec{A} \end{bmatrix} = \left(-\frac{\partial 2yz}{\partial z} - \frac{\partial 2x^2yz}{\partial y} \right) \vec{i} + \left(-\frac{\partial 2yz}{\partial x} + \frac{\partial xz^3}{\partial z} \right) \vec{j} + \left(-\frac{\partial xz^3}{\partial y} - \frac{\partial 2x^2yz}{\partial x} \right) \vec{k} = (-2y - 2x^2z) \vec{i} + 3xz^2\vec{j} - 4xyz\vec{k}$ Now we put point's coordinates x = 1, y = -1, z = 1 in the previous expression: $\begin{bmatrix} \nabla * \vec{A} \end{bmatrix} = 3\vec{j} + 4\vec{k}.$ Answer: $\begin{bmatrix} \nabla * \vec{A} \end{bmatrix} = 3\vec{j} + 4\vec{k}.$

Question

7.
$$\vec{A} = A1\vec{i} + A2\vec{j} + A3\vec{k}$$
 $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. Evaluate $\vec{\nabla} \cdot (\vec{A} * \vec{r})$.

Solution

 $\vec{\nabla} \cdot (\vec{A} * \vec{r}) = \vec{\nabla}_{\vec{A}} \cdot (\vec{A} * \vec{r}) + \vec{\nabla}_{\vec{r}} \cdot (\vec{A} * \vec{r}) = \vec{r} \cdot (\vec{\nabla}_{\vec{A}} * \vec{A}) - \vec{A} \cdot (\vec{\nabla}_{\vec{r}} * \vec{r}).$ As \vec{A} is constant $\vec{\nabla}_{\vec{A}} * \vec{A} = 0$. $\vec{\nabla}_{\vec{r}} * \vec{r} = 0$ by definition. So answer is 0.

Answer: $\vec{\nabla} \cdot (\vec{A} * \vec{r}) = 0.$

Question

8. $\vec{A} = x^2 y \vec{\imath} - 2xz \vec{\jmath} + 2yz \vec{k}$ Find Curl curl \vec{A} .

Solution

Curl curl \vec{A} is the same as $[\vec{\nabla} * [\vec{\nabla} * \vec{A}]]$.

 $\begin{bmatrix} \vec{\nabla} * [\vec{\nabla} * \vec{A}] \end{bmatrix} = grad(div\vec{A}) - \Delta \vec{A} = grad(2xy + 2y) - (2y\vec{\iota}) = 2y\vec{\iota} + (2x + 2)\vec{\jmath} - 2y\vec{\iota} = (2x + 2)\vec{\jmath}.$

Answer: $\left[\vec{\nabla} * \left[\vec{\nabla} * \vec{A}\right]\right] = (2x+2)\vec{j}.$

Question

9.
$$\vec{A} = 2x^2\vec{\iota} - 3yz\vec{j} + xz^2\vec{k}$$
 $\varphi = 2z - x^3y$ Find $\vec{A} \cdot \nabla \varphi$ at point (1;-1;1).
Solution

$$\nabla \varphi = -3x^2y\vec{\iota} - x^3\vec{j} + 2\vec{k}$$

$$\vec{A} \cdot \nabla \varphi = -6x^4y + 3yzx^3 + 2xz^2$$

Put point's coordinates x = 1, y = -1, z = 1 in the last expression: $\vec{A} \cdot \nabla \varphi(1; -1; 1) = 6 - 3 + 2 = 5$

Answer: $\vec{A} \cdot \nabla \varphi(1; -1; 1) = 5$.

Question

10. Find the directional derivative of $\varphi = x^2yz + 4xz^2$ in direction $l = 2\vec{i} - \vec{j} - 2\vec{k}$ at point (1;-2;-1)

Solution

 $\nabla \varphi = (2xyz + 4z^2)\vec{i} + x^2z\vec{j} + (x^2y + 8xz)\vec{k}$ Directional derivative is $l \cdot \nabla \varphi = 2(2xyz + 4z^2) - x^2z - 2(x^2y + 8xz)$ Putting values x = 1, y = -2, z = -1 in the previous expression $l \cdot \nabla \varphi = 2(4 + 4) + 1 - 2(-2 - 8) = 16 + 1 + 20 = 37$

Answer: $l \cdot \nabla \varphi = 37$.