Answer on Question \#58320 - Math - Complex Analysis

Question

The polar form of the complex number

$$
z=x+i y
$$

is given by

Solution

The algebraic form of the complex number z is $z=x+i y$. The polar form of the complex number z is given by

$$
z=A(\cos \varphi+i \sin \varphi) .
$$

Relationship between the polar and algebraic forms of a complex number:

$$
\begin{gathered}
A=\sqrt{x^{2}+y^{2}}, \\
\varphi=\left\{\begin{array}{c}
\arccos \frac{x}{\sqrt{x^{2}+y^{2}}}, y \geq 0, \sqrt{x^{2}+y^{2}>0}, \\
-\arccos \frac{x}{\sqrt{x^{2}+y^{2}}}, y<0, \sqrt{x^{2}+y^{2}}>0, \\
\text { undefined, } \sqrt{x^{2}+y^{2}}=0
\end{array}\right.
\end{gathered}
$$

or

$$
\varphi=\left\{\begin{array}{lr}
\arctan \frac{y}{x}, & x>0 \\
+\frac{\pi}{2}, & x=0, y>0 \\
-\frac{\pi}{2}, & x=0, \\
\arctan \frac{y}{x}+\pi, x<0, y \geq 0 \\
\arctan \frac{y}{x}-\pi, x<0, y<0
\end{array}\right.
$$

Relationship between the algebraic and polar forms of a complex number:

$$
x=A \cos \varphi, y=A \sin \varphi
$$

