Find the derivative of cot square root x using first principle. Please show your work
Solution

$$
\frac{d(\cot \sqrt{x})}{d x}=\lim _{h \rightarrow 0} \frac{\cot \sqrt{x+h}-\cot \sqrt{x}}{h}=\lim _{h \rightarrow 0} \frac{\left(\frac{1}{\tan (\sqrt{h+x})}-\frac{1}{\tan (\sqrt{x})}\right)}{h}
$$

Indeterminate form of type 0/0. Applying L'Hospital's rule we have,

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{\left(\frac{1}{\tan (\sqrt{h+x})}-\frac{1}{\tan (\sqrt{x})}\right)}{h}=\lim _{h \rightarrow 0} \frac{\frac{d}{d h}\left(\frac{1}{\tan (\sqrt{d+x})}-\frac{1}{\tan (\sqrt{x})}\right)}{\frac{d h}{d h}} \\
\frac{d}{d h}\left(\frac{1}{\tan (\sqrt{d+x})}-\frac{1}{\tan (\sqrt{x})}\right)=-\frac{1}{2 \sqrt{d+x} \sin (\sqrt{d+x})^{2}}
\end{gathered}
$$

Thus:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{-\frac{1}{\tan (\sqrt{x})}}{}+\frac{1}{\tan (\sqrt{h+x})} h \\
& \lim _{h \rightarrow 0}-\frac{1}{2 \sqrt{h+x} \sin (\sqrt{d+x})^{2}}=-\frac{1}{2}\left(\lim _{h \rightarrow 0} \frac{1}{\sqrt{h+x} \sin (\sqrt{h+x})^{2}}\right) \\
&=-\frac{1}{2 \sqrt{\lim _{h \rightarrow 0}(h+x)}\left(\lim _{h \rightarrow 0} \sin (\sqrt{h+x})^{2}\right)}=-\frac{1}{2 \sqrt{x} \sin \left(\sqrt{\lim _{h \rightarrow 0}(h+x)}\right)^{2}}=-\frac{\csc ^{2}(\sqrt{x})}{2 \sqrt{x}}
\end{aligned}
$$

Answer:

$$
\frac{d(\cot \sqrt{x})}{d x}=\lim _{h \rightarrow 0} \frac{\cot \sqrt{x+h}-\cot \sqrt{x}}{h}=-\frac{\boldsymbol{\operatorname { c s c }}^{2}(\sqrt{x})}{2 \sqrt{x}}
$$

