Answer on Question \#58301 - Math - Algorithms | Quantitative Methods

Question

Use newton's method to approximate SQRT of 11 to 5 decimal places.

Solution

Finding $\operatorname{SQRT}(S)$ is the same as solving the equation

$$
\begin{equation*}
x^{2}-S=0 \tag{1}
\end{equation*}
$$

Therefore, any general numerical root-finding algorithm can be used for solwing (1). Let $f(x)=x^{2}-S, f^{\prime}(x)=2 x$. In Newton's method we use the following recurrent equation

$$
\begin{gather*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
x_{n+1}=x_{n}-\frac{x_{n}^{2}-S}{2 x_{n}} \\
x_{n+1}=\frac{x_{n}+\frac{S}{x_{n}}}{2} \tag{2}
\end{gather*}
$$

Using condition, here $S=11, n=0,1,2,3, \ldots$ is a number of iteration step, and x_{n} is the approximation for square root on the n-th step of the iterative process.
Substitute for $S=11$ in formula (2):

$$
\begin{equation*}
x_{n+1}=\frac{x_{n}+\frac{11}{x_{n}}}{2} \tag{3}
\end{equation*}
$$

Choose the zero-approximation, and let it be $x_{0}=3.2<\sqrt{11}$ for instance.
Therefore, the calculations for next approximations will be following:

1. $x_{1}=\frac{3.2+\frac{11}{3.2}}{2} \approx 3.31875$
2. $x_{2}=\frac{3.31875+\frac{11}{3.31875}}{2} \approx 3.31663$
3. $x_{3}=\frac{3.31663+\frac{11}{3.31663}}{2} \approx 3.31662$

The difference between x_{3} and x_{2} is less or equal to 0.00001 . Thus, the required accuracy is attained and x_{3} is the appropriate approximation

$$
\operatorname{SQRT}(11)=\sqrt{11} \approx 3.31662
$$

Answer: $\sqrt{11} \approx 3.31662$

