Answer on Question \#57668-Math - Analytic Geometry

Question

1. Find the general equation of the line parallel to $4 x-3 y=15$ and passing:
a. at a distance 2 from the origin
b. twice as far from the origin
c. 2 units far from the origin
d. at a distance 5 from the given line.

Solution:

Given the line: $4 x-3 y=15$

It is equal to
$4 x-3 y-15=0$ or $y=\frac{4}{3} x-5$
Lines which are parallel to given line have the same angular coefficient $k=\frac{4}{3}$.
And their equation is $y=\frac{4}{3} x+b$, where b is the intercept or $\frac{4}{3} x-y+b=0$.

In the case of a line in the plane given by the equation $a x+b y+c=0$, where a, b and c are real constants with a and b not both zero, the distance from the line to a point $\left(x_{0}, y_{0}\right)$ is $d=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}$. Let use this formula for the next calculations.
a) At a distance 2 from the origin.
$d=2$ from $(0 ; 0)$
Substitute the relevant numbers into the formula for the distance:

$$
\begin{gathered}
2=\frac{\left|\frac{4}{3} * 0-1 * 0+b\right|}{\sqrt{\frac{16}{9}+1}} \\
|b|=\frac{10}{3}
\end{gathered}
$$

$b=\frac{10}{3}$ or $b=-\frac{10}{3}$
Substitute b into $y=\frac{4}{3} x+b$.

Answer: $y=\frac{4}{3} x \pm \frac{10}{3}$.
b) Twice as far from the origin.

Given line: $4 x-3 y-15=0$
Point: (0;0)
Find the distance from a given line to the origin with our formula:

$$
d=\frac{|4 * 0-3 * 0-15|}{\sqrt{16+9}}=3
$$

Twice as far from the origin: $d_{1}=2 * d=2 * 3=6$.
$\frac{4}{3} x-y+b=0$.
$d_{1}=6$.
Point: ($0 ; 0$).
Substitute the relevant numbers into the formula for the distance:
$6=\frac{\left|\frac{4}{3} * 0-1 * 0+b\right|}{\sqrt{\frac{16}{9}+1}}$
$|b|=10$
$b=10$ or $b=-10$.

Substitute b into $y=\frac{4}{3} x+b$.
Answer: $y=\frac{4}{3} x \pm 10$.
c) 2 units far from the origin.
$d_{1}=d+2=3+2=5$.
Point ($0 ; 0$).
$\frac{4}{3} x-y+b=0$.
Substitute the relevant numbers into the formula for the distance:

$$
\begin{gathered}
5=\frac{\left|\frac{4}{3} * 0-1 * 0+b\right|}{\sqrt{\frac{16}{9}+1}} \\
|b|=\frac{25}{3}
\end{gathered}
$$

$b=\frac{25}{3}$ or $b=-\frac{25}{3}$
Substitute b into $y=\frac{4}{3} x+b$.
Answer: $y=\frac{4}{3} x \pm \frac{25}{3}$.
d) At a distance 5 from the given line.

At a distance $d_{1}=d+5=3+5=8$ from the origin.
Point: (0;0).
$\frac{4}{3} x-y+b=0$.
Substitute the relevant numbers into the formula for the distance:

$$
8=\frac{\left|\frac{4}{3} * 0-1 * 0+b\right|}{\sqrt{\frac{16}{9}+1}}
$$

$|b|=\frac{40}{3}$.
$b=\frac{40}{3}$ or $b=-\frac{40}{3}$.
Substitute b into $y=\frac{4}{3} x+b$.

$$
\text { Answer: } y=\frac{4}{3} x \pm \frac{40}{3}
$$

Question

2.

Find the general equation of the line parallel to $x+y=3$ and passing:
a. at a distance 2 from the origin
b. 2 square root of 2 units farther from the origin
c. $2 / 3$ as far from the origin
d. at a distance 3 square root of 2 from the given line

Solution

Given the line: $x+y=3$.

It is equal to
$x+y-3=0$ or $y=-x+3$
Lines which are parallel to the given line have the same slope $k=-1$.

Their equation is $y=-x-b$, where b is the intercept, hence obtain $x+y+b=0$.

In the case of a line in the plane given by the equation $a x+b y+c=0$, where a, b and c are real constants with a and b not simultaneously zero, the distance from the line to a point $\left(x_{0}, y_{0}\right)$ is
$d=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}$. Let use this formula for the next calculations.
a) At a distance 2 from the origin.
$d=2$ from (0;0).
$x+y+b=0$.
Substitute the relevant numbers into the formula for the distance:

$$
\begin{gathered}
2=\frac{|1 * 0+1 * 0+b|}{\sqrt{1+1}} \\
|b|=2 \sqrt{2} \\
b= \pm 2 \sqrt{2}
\end{gathered}
$$

Substitute b into $y=-x-b$.

Answer: $y=-x \pm 2 \sqrt{2}$.
b) 2 square root of 2 units farther from the origin.

Given line: $x+y-3=0$
Point: (0;0)
Find the distance from the given line to the origin with the formula:

$$
d=\frac{|1 * 0+1 * 0-3|}{\sqrt{1+1}}=\frac{3}{\sqrt{2}}
$$

$d_{1}=d+2 \sqrt{2}=\frac{3}{\sqrt{2}}+2 \sqrt{2}=\frac{7}{\sqrt{2}}$.
$x+y+b=0$.
$d_{1}=\frac{7}{\sqrt{2}}$.
Point: (0;0).
Substitute the relevant numbers into the formula for the distance:

$$
\begin{gathered}
\frac{7}{\sqrt{2}}=\frac{|1 * 0+1 * 0+b|}{\sqrt{1+1}} \\
|b|=7 \\
b= \pm 7
\end{gathered}
$$

Substitute b into $y=-x-b$.

Answer: $y=-x \pm 7$.
c) $2 / 3$ as far from the origin.

$$
d_{1}=\frac{2}{3} d=\frac{2}{3} * \frac{3}{\sqrt{2}}=\sqrt{2}
$$

$x+y+b=0$.
$d_{1}=\sqrt{2}$.
Point: $(0 ; 0)$.
Substitute the relevant numbers into the formula for the distance:

$$
\begin{gathered}
\sqrt{2}=\frac{|1 * 0+1 * 0+b|}{\sqrt{1+1}} \\
|b|=2 \\
b= \pm 2
\end{gathered}
$$

Substitute b into $y=-x-b$.

Answer: $y=-x \pm 2$.
d) At a distance 3 square root of 2 from the given line.

$$
d_{1}=3 \sqrt{2}+d=3 \sqrt{2}+\frac{3}{\sqrt{2}}=\frac{9}{\sqrt{2}}
$$

$x+y+b=0$.
$d_{1}=\frac{9}{\sqrt{2}}$.
Point: (0;0).
Substitute the relevant numbers into the formula for the distance:

$$
\begin{gathered}
\frac{9}{\sqrt{2}} \cdot=\frac{|1 * 0+1 * 0+b|}{\sqrt{1+1}} \\
|b|=9 \\
b= \pm 9
\end{gathered}
$$

Substitute b into $y=-x-b$.

Answer: $y=-x \pm 9$.

Question

3.

Find the general equation of the line:
a. parallel to the line $2 x+3 y=6$ and passing at a distance 5 square root of 13 over 13 from the point $(-1,1)$
b. parallel to the line $x-y+9=0$ and passing at a distance 5 square root of 2 from the point $(1,4)$
c. perpendicular to the line $3 x+4 y=7$ and passing at a distance 4 from the point $(1,-2)$
d. perpendicular to the line $3 x-4 y=20$ and passing at a distance 2 from the point $(-1,1)$

Solution:

a) $2 x+3 y=6$.

$$
\begin{gathered}
y=\frac{6-2 x}{3} \\
y=-\frac{2}{3} x+2 \\
k=-\frac{2}{3}
\end{gathered}
$$

$y=-\frac{2}{3} x+b$ or $-\frac{2}{3} x-y+b=0$.
Point: $(-1,1)$.
$d=5 \sqrt{13}$.
$-\frac{2}{3} x-y+b=0$.
Substitute the relevant numbers into the formula for the distance:

$$
\begin{gathered}
5 \sqrt{13}=\frac{\left|-1 *\left(-\frac{2}{3}\right)-1+b\right|}{\sqrt{\frac{4}{9}+1}} \\
b=27
\end{gathered}
$$

Substitute b into $y=-\frac{2}{3} x+b$

Answer: $y=-\frac{2}{3} x+27$.
b) Parallel to the line $x-y+9=0$ and passing at a distance 5 square root of 2 from the point (1, 4).

$$
\begin{gathered}
y=x+9 \\
k=1
\end{gathered}
$$

$y=x+b$ or $x-y+b=0$.
Point: $(1,4)$.
$d=5 \sqrt{2}$.
$x-y+b=0$.
Substitute the relevant numbers into the formula for the distance:

$$
\begin{gathered}
5 \sqrt{2}=\frac{|1 * 1-1 * 4+\mathrm{b}|}{\sqrt{1+1}} \\
|-3+b|=10
\end{gathered}
$$

$b=13$ or $b=-7$
Substitute b into $y=x+b$.
Answer: $y=x+13$ or $y=x-7$.
c) Perpendicular to the line $3 x+4 y=7$ and passing at a distance 4 from the point (1, -2). If lines are perpendicular then product of their slopes is equal to -1 . In the given line:

$$
\begin{gathered}
y=-\frac{3}{4} x+\frac{7}{4} \\
k=-\frac{3}{4}
\end{gathered}
$$

So, the perpendicular line has a slope of $k_{1}=-\frac{1}{k}=-\frac{1}{-\frac{3}{4}}=\frac{4}{3}$.
Equation of a perpendicular line is

$$
y=\frac{4}{3} x+b
$$

or
$\frac{4}{3} x-y+b=0$.
Point: (1,-2).
$d=4$.
Substitute the relevant numbers into the formula for the distance:

$$
4=\frac{\left|1 * \frac{4}{3}+2 * 1+\mathrm{b}\right|}{\sqrt{\frac{16}{9}+1}}
$$

$b=\frac{10}{3}$ or $b=-10$.
Substitute b into $y=\frac{4}{3} x+b$.
Answer: $y=\frac{4}{3} x+\frac{10}{3}$ or $y=\frac{4}{3} x-10$.
d) Perpendicular to the line $3 x-4 y=20$ and passing at a distance 2 from the point ($-1,1$). If lines are perpendicular then product of their slopes is equal to -1 . In the given line:

$$
\begin{gathered}
y=\frac{3}{4} x-5 \\
k=\frac{3}{4}
\end{gathered}
$$

So, $k_{1}=-\frac{1}{k}=-\frac{1}{\frac{3}{4}}=-\frac{4}{3}$.
$y=-\frac{4}{3} x+b$.
$-\frac{4}{3} x-y+b=0$.
Point: $(-1,1)$.
$d=2$.
Substitute the relevant numbers into the formula for the distance:

$$
2=\frac{\left|-\frac{4}{3} *(-1)-1+b\right|}{\sqrt{\frac{16}{9}+1}}
$$

$b=-\frac{11}{3}$ or $b=3$.
Substitute b into $y=-\frac{4}{3} x+b$.

Answer: $y=-\frac{4}{3} x-\frac{11}{3}$ or $y=-\frac{4}{3} x+3$.

