Answer on Question \#57582 - Math - Analytic Geometry

Question

$C D$ is trisected at points P and Q. Find the position vectors of points of trisection, if the position vectors of C and D are $c \rightarrow$ and $d \rightarrow$ respectively.

Let O be the origin.

Given:

$\overrightarrow{O C}=\vec{c} \quad C P=P Q=Q D$
$\overrightarrow{O D}=\vec{d}$

Find:

$\overrightarrow{O P}=\vec{p}$
$\overrightarrow{O Q}=\vec{q}$

Solution

$\overrightarrow{C D}=\vec{d}-\vec{c}$

On the one hand,
$\overrightarrow{C P}=\vec{p}-\vec{c}$
$\overrightarrow{C Q}=\vec{q}-\vec{c}$
On the other hand,
$\overrightarrow{C P}=\frac{1}{3}(\vec{d}-\vec{c})$
$\overrightarrow{C Q}=\frac{2}{3}(\vec{d}-\vec{c})$
$\vec{p}=\vec{c}+\overrightarrow{C P}=\vec{c}+\frac{1}{3}(\vec{d}-\vec{c})=\frac{2}{3} \vec{c}+\frac{1}{3} \vec{d}$
$\vec{q}=\vec{c}+\overrightarrow{C Q}=\vec{c}+\frac{2}{3}(\vec{d}-\vec{c})=\frac{1}{3} \vec{c}+\frac{2}{3} \vec{d}$
Answer: $\vec{p}=\frac{2}{3} \vec{c}+\frac{1}{3} \vec{d}, \quad \vec{q}=\frac{1}{3} \vec{c}+\frac{2}{3} \vec{d}$.

