Question

CD is trisected at points P and Q. Find the position vectors of points of trisection, if the position vectors of C and D are $c \rightarrow$ and $d \rightarrow$ respectively.

Let O be the origin.

Given:

$\overrightarrow{OC} = \overrightarrow{c}$	CP = PQ = QD
$\overrightarrow{OD} = \overrightarrow{d}$	

Find:

 $\overrightarrow{OP} = \overrightarrow{p}$ $\overrightarrow{OQ} = \overrightarrow{q}$

Solution

 $\overrightarrow{CD} = \overrightarrow{d} - \overrightarrow{c}$

On the one hand, $\overrightarrow{CP} = \overrightarrow{p} - \overrightarrow{c}$ $\overrightarrow{CQ} = \overrightarrow{q} - \overrightarrow{c}$

On the other hand,

$$\overrightarrow{CP} = \frac{1}{3}(\vec{d} - \vec{c})$$

$$\overrightarrow{CQ} = \frac{2}{3}(\vec{d} - \vec{c})$$

$$\vec{p} = \vec{c} + \overrightarrow{CP} = \vec{c} + \frac{1}{3}(\vec{d} - \vec{c}) = \frac{2}{3}\vec{c} + \frac{1}{3}\vec{d}$$

$$\vec{q} = \vec{c} + \overrightarrow{CQ} = \vec{c} + \frac{2}{3}(\vec{d} - \vec{c}) = \frac{1}{3}\vec{c} + \frac{2}{3}\vec{d}$$

Answer: $\vec{p} = \frac{2}{3}\vec{c} + \frac{1}{3}\vec{d}$, $\vec{q} = \frac{1}{3}\vec{c} + \frac{2}{3}\vec{d}$.