\#5746 Build the linear operator on \mathbb{R}^{4} that does not possess eigenvectors Solution It is obvious that in order a linear operator on \mathbb{R}^{4} not to possess eigenvectors it is neccessary and sufficient for operator only to have complex eigenvalues with non-zero imaginary part.

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

A posses two eigenvalues of multiplicity 2 , they are $\lambda_{1,2}=1 \pm i($ it is a consequence of that A has block form), thus the equality $A \mathbf{v}=\lambda_{1,2} \mathbf{v}, \mathbf{v} \neq 0$ is impossible.

