Answer on Question \#57357 - Math - Analytic Geometry

Question

Write the equation of the directrix of the conic section shown below. Write your answer without using spaces.

$$
\begin{equation*}
y^{2}+16 y+4 x+4=0 \tag{*}
\end{equation*}
$$

Solution

By definition the canonical equation of a parabola with horizontal axis of symmetry has the form

$$
\begin{equation*}
y^{2}=2 p x \tag{1}
\end{equation*}
$$

where p is the distance from the vertex to the focus and the vertex to the directrix. The equation of the directrix for parabola (1) has the form

$$
\begin{equation*}
x=-\frac{p}{2} . \tag{2}
\end{equation*}
$$

The vertex of parabola (1) is at the point $(0,0)$.
The conic section (${ }^{*}$) is a parabola. Let`s show it. Rewriting (1) in more convenient form we obtain

$$
\begin{gather*}
y^{2}+16 y+64-64+4 x+4=0 \\
(y+8)^{2}+4 x-60=0 \\
(y+8)^{2}=-4 \cdot(x-15) \tag{3}
\end{gather*}
$$

As we see, the equation (3) describes the parabola with the vertex at the point (15,-8).
Let's introduce the new coordinates

$$
\begin{equation*}
y^{\prime}=y+8, \quad x^{\prime}=x-15 \tag{4}
\end{equation*}
$$

Then the equation (3) takes the form

$$
\begin{equation*}
\left(y^{\prime}\right)^{2}=-4 x^{\prime} \tag{5}
\end{equation*}
$$

Comparing (2) and (5) we can write

$$
2 p=-4 \Rightarrow p=-2
$$

Thus, the equation of the directrix in the new system of coordinates (4) is

$$
\begin{align*}
& x^{\prime}=-\frac{-2}{2}=1 \\
& x^{\prime}=1 . \tag{6}
\end{align*}
$$

Therefore, taking into account (4) and (6), we can write the directrix equation in the basic system of coordinates:

$$
\begin{align*}
& 1=x-15 \\
& x=16 . \tag{7}
\end{align*}
$$

Answer: $x=16$.

