Answer on Question \#57356-Math - Analytic Geometry

Question 1. What are the coordinates of the vertices of the conic section shown below?

$$
\frac{(y+2)^{2}}{16}-\frac{(x-3)^{2}}{9}=1
$$

A: $(0 ;-2)$ and $(6 ;-2)$
B: $(-2 ;-1)$ and $(-2 ; 7)$
C: $(-1 ;-2)$ and (7; 2)
D: $(3 ;-6)$ and $(3 ; 2)$

Solution

This conic section is a hyperbola.
The equation of a hyperbola is:

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}-\frac{\left(y-y_{0}\right)^{2}}{b^{2}}= \pm 1
$$

So, we have "North-South opening hyperbola".
The coordinates of the center are $(3 ;-2)$. Then, the coordinates of the vertices of the hyperbola are $(3 ;-2 \pm b) \Leftrightarrow(3 ;-2 \pm 4) \Leftrightarrow(3 ;-6)$ and $(3 ; 2)$.
Answer: D. $(3 ;-6)$ and $(3 ; 2)$.

Question 2. What are the coordinates of the foci of the conic section shown below?

$$
\frac{(y+2)^{2}}{25}-\frac{(x-3)^{2}}{4}=1
$$

A: $(3 \pm \sqrt{21} ;-2)$
B: $(3 \pm \sqrt{29} ;-2)$
C: $(3 ;-2 \pm \sqrt{29})$
D: $(3 ;-2 \pm \sqrt{21})$

Solution

This conic section is a hyperbola.
The equation of a hyperbola is

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}-\frac{\left(y-y_{0}\right)^{2}}{b^{2}}= \pm 1
$$

So, we have "North-South opening hyperbola".
We have: $a=2$ and $b=5$. The coordinates of the center are (3; -2). Therefore $c=\sqrt{a^{2}+b^{2}}=\sqrt{29}$. And the coordinates of the foci of the hyperbola are $(3 ;-2 \pm c) \Leftrightarrow$ (3; $-2 \pm \sqrt{29}$).

Answer: C $(3 ;-2 \pm \sqrt{29})$.
Question 3. Which direction does the graph of the equation shown below open?

$$
x^{2}+6 x-4 y+5=0
$$

A: up
B: down
C: right
D: left

Solution

Transform the expression:

$$
x^{2}+6 x-4 y+5=x^{2}+6 x+9-9-4 y+5=(x+3)^{2}-4 y+14=0
$$

So, we have:

$$
(x+3)^{2}=4 y-14
$$

The graph of the equation opens up.
Answer: A up.

