Answer on Question \#57350 - Math - Analytic Geometry

Question

Graph the equations shown below, the graph is scaled to 10 high and 10 wide.

$$
\begin{aligned}
& \frac{x^{2}}{64}+\frac{y^{2}}{36}=1 \\
& \frac{x^{2}}{64}-\frac{y^{2}}{36}=1 \\
& \frac{x^{2}}{100}-\frac{y^{2}}{64}=1 \\
& \frac{x^{2}}{100}+\frac{y^{2}}{64}=1
\end{aligned}
$$

Solution

1.

$$
\frac{x^{2}}{64}+\frac{y^{2}}{36}=1
$$

is the equation of ellipse with the semi-major axis $a=\sqrt{64}=8$, and the semi-minor axis $b=\sqrt{36}=6$. Then we graph it:

2.

$$
\frac{x^{2}}{64}-\frac{y^{2}}{36}=1
$$

is the equation of hyperbola with the semi-major axis $a=\sqrt{64}=8$, and the conjugate axis $2 b=2 \sqrt{36}=12$. Then we graph it:

3.

$$
\frac{x^{2}}{100}-\frac{y^{2}}{64}=1
$$

is the equation of hyperbola with the semi-major axis $a=\sqrt{100}=10$, and the conjugate axis $2 b=$ $2 \sqrt{64}=16$. Then we graph it:

4.

$$
\frac{x^{2}}{100}+\frac{y^{2}}{64}=1
$$

is the equation of ellipse with the semi-major axis $a=\sqrt{100}=10$, and the semi-minor axis $b=\sqrt{64}=8$. Then we graph it:

