Answer on Question \#57064 - Math - Combinatorics | Number Theory
 Question

What is the result of 0 power of 0 ?

Solution

In fact, 0^{0} is not defined.

Nevertheless, there is an agreement in mathematics that $0^{0}=1$ like $0!=1$. It is also accustomed in many different calculators and software applications.

These arguments arise in algebra.
On the one hand, it is true that $0^{0}=1$, because by the definition of power:

$$
a^{n}=1 \cdot \underbrace{a \cdot \ldots \cdot a}_{n \text { times }} .
$$

When $\mathrm{a}=0$ and $\mathrm{n}=0$ we have:

$$
0^{0}=1 \cdot \underbrace{0 \cdot \ldots \cdot 0}_{0 \text { times }}=1
$$

On the other hand, it is true that $0^{0}=0$:
$0^{x}=0^{1+x-1}=0^{1} \cdot 0^{x-1}=0 \cdot 0^{x-1}=0$,
which is true since anything times 0 is 0 . That means that

$$
0^{0}=0
$$

The next arguments arise in calculus.
On the one hand, the limit of x^{x} as x tends to zero from the right is 1 . In other words, if we want the x^{x} function to be right continuous at 0 , we should define it to be 1 .

On the other hand, the function $f(x, y)=y^{x}$ has a discontinuity at the point $(x, y)=(0,0)$.
In particular, when we approach $(0,0)$ along the line with $x=0$ we get
$\lim _{y \rightarrow 0} f(0, y)=1$
But when we approach $(0,0)$ along the line segment with $y=0$ and $x>0$ we get
$\lim _{x \rightarrow 0^{+}} f(x, 0)=0$.
Therefore, the value of $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ depends on the direction that we take the limit. This means that there is no way to define 0^{0} that will make the function y^{x} continuous at the point $(x, y)=(0,0)$.

