Answer on Question \#56773 - Math - Combinatorics | Number Theory

How many words can we build using exactly 5 A's, 5 B's and 5 C's if the first 5 letters cannot be A's, the second 5 letters cannot be B's and the third 5 letters cannot be C's? Hint: Group the different ways according to the number of B's in the first group.

Solution

Assume that exactly N A's stand on the last 5 positions (so $N \in\{0,1,2,3,4,5\}$). It follows that there are $5-N$ B's on the last 5 positions and $5-N A^{\prime}$ s on the middle 5 positions. Also it follows that there are N C's on the middle 5 positions and $5-N C^{\prime}$ s on the first 5 positions.

So there are $\binom{5}{N}$ ways to place $N A^{\prime}$'s on the last 5 positions. Then there are $\binom{5}{5-N}$ ways to place the rest A's on the middle 5 positions. Finally, there are $\binom{5}{N}$ ways to place N B's on the first 5 positions. So if we place $N \mathrm{~A}^{\prime}$ s on the last 5 positions, $5-N \mathrm{~A}^{\prime}$ s on the middle 5 positions and N B's on the first 5 positions, then the rest positions can be filled in the only way - C's on the first and on the middle 5 positions, B^{\prime} s on the last 5 positions.

Hence the number of words with $N \mathrm{~A}^{\prime}$ s on the last 5 positions is equal to

$$
\binom{5}{N} \cdot\binom{5}{5-N} \cdot\binom{5}{N}=\binom{5}{N}^{3}
$$

and the total number is

$$
\sum_{N=0}^{5}\binom{5}{N}^{3}=1^{3}+5^{3}+10^{3}+10^{3}+5^{3}+1^{3}=2252
$$

Answer: 2252.

