Answer on Question \#56761 - Math - Combinatorics | Number Theory

How many 15-letter arrangements of $5 A^{\prime} s, 5 B^{\prime}$ s and $5 C^{\prime}$ s have no A^{\prime} s in the first 5 letters, no B 's in the next 5 letters, and no C 's in the last 5 letters?

Solution

We have the following different cases, in each of them we use the formula $\overline{P_{n=k_{1}+k_{2}}}\left(k_{1}, k_{2}\right)=\frac{n!}{k_{1}!\cdot k_{2}!}$:

1) The first 5 letters are $5 C^{\prime}$ s. Then the next 5 letters may be only all A^{\prime} 's, and the last 5 letters may be only all B^{\prime} s. We have $\left(\overline{P_{5}}(5)\right)^{3}=1$ arrangement.
2) In the first 5 letters there is only 1 letter B (other 4 letters may be only C^{\prime} s). Then in the second 5 letters there are $1 C$ and $4 A^{\prime}$ s, and in the last 5 letters there are $1 A$ and $4 B^{\prime}$ s. Total number of the different arrangements for this cases is equal to $\left(\overline{P_{5}}(4,1)\right)^{3}=5^{3}=125$.
3) In the first 5 letters there is only 2 letters B (other 3 letters may be only C^{\prime}). Then in the second 5 letters there are $2 C^{\prime}$'s and $3 A^{\prime} s$, and in the last 5 letters there are $2 A^{\prime} s$ and $3 B^{\prime} s$. Total number of the different arrangements for this case is equal to $\left(\overline{P_{5}}(3,2)\right)^{3}=10^{3}=1000$.

Other cases are the following:
4) In the first 5 letters there is only 3 letters B (other 2 letters may be only C^{\prime} s).
5) In the first 5 letters there is only 4 letters B (another letter may be only C).
6) In the first 5 letters there are $5 B^{\prime}$ s.

Cases 4)-6) will be symmetric to cases 3)-1).
Therefore, we have $(1+125+1000) \cdot 2=1126 \cdot 2=2252$ arrangements.
Answer: 2252.

