Answer on Question \#56759 - Math - Combinatorics | Number Theory

For each positive integer k, let Sk denote the increasing arithmetic sequence of integers whose first term is 1 and whose common difference is k. For example, $S 3$ is the sequence $1,4,7,10, \ldots$

Find the number of values of k for which Sk contains the term 361.

Solution

Since S_{k} is increasing arithmetic sequence of integers whose first term is 1 , then a_{n} which belongs to S_{k} can be represented as $a_{n}=1+k n$ (in this case $1=a_{0}$), where n is integer. Thus, there exists an integer p such that $a_{p}=1+k p=361$, hence $k p=361-1=360$.

Let's find possible values of k. Since k and p positive integers (it is obvious that $p \neq 0$) and $360=k p$, then k and p are divisors of 360 , and $360=1 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$.
Thus, $k=2^{i} \cdot 3^{j} \cdot 5^{t}$, where $0 \leq i \leq 3,, 0 \leq j \leq 2, \quad, 0 \leq t \leq 1, \quad i, j, t$ are integer. Therefore, we obtain that there are $4 \cdot 3 \cdot 2=24$ different combinations of integers i, j, t. Thus, the number of values of k, for which S_{k} contains the term 361, is 24.
Answer: 24.

