1. The original value of a car is $\$ 22,000$ and it depreciates (loses value) by 15% each year. What is the value of the car after three years?

A: $\$ 74.25$
B: $\$ 15,895$
C: $\$ 56,595$
D: \$13,510.75

Solution

Annual depreciation is 15%, thus the remaining price is 85% of previous value.
Value after n years: $P_{n}=P_{0} \times 0.85^{n}$
Value after 3 years: $P_{3}=\$ 22,000 \times 0.85^{3}=\$ 13,510.75$
Answer: D: \$13,510.75
2. A ball dropped from a height of 12 feet and returns to a height that is one-half of the height from which it fell. How far will the ball have traveled when it hits the ground for the fifth time?

A: 34.5 feet
B: 1.5 feet
C: 12 feet
D: 24 feet

Solution

The height which the ball reaches after n hits: $H_{n}=H_{0} \times 0.5^{n}$
The height after $1^{\text {st }}$ hit: $H_{1}=12 \times 0.5^{1}=6 \mathrm{ft}$
The height after $2^{\text {nd }}$ hit: $H_{2}=12 \times 0.5^{2}=3 \mathrm{ft}$
The height after $3^{\text {rd }}$ hit: $H_{3}=12 \times 0.5^{3}=1.5 \mathrm{ft}$
The height after $4^{\text {th }}$ hit: $H_{4}=12 \times 0.5^{4}=0.75 \mathrm{ft}$
The total distance traveled by ball:
$D=\mathrm{H}_{0}+2 \mathrm{H}_{1}+2 \mathrm{H}_{2}+2 \mathrm{H}_{3}+2 \mathrm{H}_{4}=34.5 \mathrm{ft}$
Answer: A: 34.5 feet
3. Which of the following are geometric sequences?

Check all that apply
$10,5,2.5,1.25,0.625,0.3125+$
$5,10,15,20,25$
$1,1,2,3,8,13$,
$-9,-3,-1,-1 / 3,-1 / 9,-1 / 27+$

Correct options marked with " + ". Reason: the ratio r is the same for each pair of terms of the sequence.

