Answer on Question \#56190 - Math - Calculus

Find the area of the largest rectangle with one corner at the origin, the opposite corner in the first quadrant on the graph of the parabola $\mathrm{f}(\mathrm{x})=48-4 x^{2}$, and sides parallel to the axes.

Solution

Two sides of the rectangle are equal to x and $y=f(x)=48-4 x^{2}$. Hence its area is equal to $S=48 x-4 x^{3}$. It has the maximum value for x satisfying the equation

$$
\frac{d s}{d x}=48-12 x^{2}=0 .
$$

Consequently, $x=2$ since the rectangle is located in the first quadrant.
$\frac{d^{2} S}{d x^{2}}=-24 x,\left.\frac{d^{2} S}{d x^{2}}\right|_{x=2}=-24 \cdot 2=-48<0$, therefore $x=2$ is indeed a local maximum.
Thus, the largest area is equal to $S=48 \cdot 2-4 \cdot 2^{3}=64$.
Answer: 64.

