Answer on Question \#56189 - Math - Calculus

The manager of a large apartment complex knows from experience that 120 units will be occupied if the rent is 396 dollars per month. A market survey suggests that, on the average, one additional unit will remain vacant for each 9 dollar increase in rent. Similarly, one additional unit will be occupied for each 9 dollar decrease in rent. What rent should the manager charge to maximize revenue?

Solution

Revenue is found by multiplying number of units N by the rent of each unit r.

$$
R=N r
$$

If there are n increases of 9 dollars each in the rent, then

$$
r=396+9 n
$$

and

$$
N=120-n
$$

And so,

$$
R=(120-n)(396+9 n)=47520+684 n-9 n^{2}
$$

with respect to n, the maximum revenue occurs when $\frac{d R}{d n}=0$, because $\frac{d^{2} R}{d n^{2}}=-18<0$.

But

$$
\frac{d R}{d n}=684-18 n=0 \rightarrow n=38
$$

This means that for 38 increases each of 9 dollars in the rent, revenue is maximum.

The rent is then

$$
r=396+9(38)=\$ 738
$$

If there are n decreases of 9 dollars each in the rent, then

$$
r=396-9 n
$$

and

$$
N=120+n
$$

And so,

$$
R=(120+n)(396-9 n)=47520-684 n-9 n^{2}
$$

With respect to n, the maximum revenue occurs when $\frac{d R}{d n}=0$
But,

$$
\frac{d R}{d n}=-684-18 n=0 \rightarrow n=-38
$$

The rent is then

$$
r=396-9(-38)=\$ 738 .
$$

Thus, the manager should charge $\$ 738$ of the rent to maximize revenue.

