Answer on Question \#56187 - Math - Calculus

The manager of a large apartment complex knows from experience that 120 units will be occupied if the rent is 372 dollars per month. A market survey suggests that, on the average, one additional unit will remain vacant for each 3 dollar increase in rent. Similarly, one additional unit will be occupied for each 3 dollar decrease in rent. What rent should the manager charge to maximize revenue?

Solution

Let's find a function of revenue. It will be $f(x)=(372+3 x)(120-x)$, where x is the number of additional or remain vacant units. To find a max revenue we need to find critical points of the derivative.
Derivative function is $f^{\prime}(x)=\left(44640-12 x-3 x^{2}\right)^{\prime}=-12-6 x$. A critical point: $-12-6 x=0$. So $x=-2$.
The second derivative function is $f^{\prime \prime}(x)=(-12-6 x)^{\prime}=-6<0$
So maximal revenue will be when amount rent cost is 366 dollars per month (122 units). Answer: 366 dollars per month.

