## Answer on Question \#56122 - Math - Calculus

Let $\varphi(x, y, z)=x y 2 z$ and $A=x z i-x y 2 j+y z 2 k$,find
$\partial^{\wedge} 3 / \partial x^{\wedge} 2 \partial z(\varphi A)$
$2 i+2 j-5 k$

5i-k
$4 i-2 j$
i+j

## Solution

$$
\begin{gathered}
(\phi A)=x y^{2} z \cdot\left(x z ; x y^{2} ; y z^{2}\right)=\left(x^{2} y^{2} z^{2} ; x^{2} y^{4} z ; x^{3} z^{3}\right) \\
\frac{\partial^{3}}{\partial x^{2} \partial z}\left(x^{2} y^{2} z^{2}\right)=\frac{\partial^{2}}{\partial x^{2}}\left(2 x^{2} y^{2} z\right)=4 y^{2} z \\
\frac{\partial^{3}}{\partial x^{2} \partial z}\left(x^{2} y^{4} z\right)=\frac{\partial^{2}}{\partial x^{2}}\left(x^{2} y^{4}\right)=2 y^{4} \\
\frac{\partial^{3}}{\partial x^{2} \partial z}\left(x^{3} z^{3}\right)=\frac{\partial^{2}}{\partial x^{2}}\left(3 x y^{3} z^{2}\right)=0
\end{gathered}
$$

Thus,

$$
\frac{\partial^{3}}{\partial x^{2} \partial z}(\phi \overrightarrow{\mathrm{~A}})=4 y^{2} z \vec{\imath}+2 y^{4} \vec{\jmath}
$$

If we need the answer only with numbers we need to choose the point where we calculate $\frac{\partial^{3}}{\partial x^{2} \partial z}(\phi \overrightarrow{\mathrm{~A}})$.
Also we can see that answers $\mathbf{2 i} \mathbf{i} \mathbf{2 j} \mathbf{- 5 k}$ and $\mathbf{5 i} \mathbf{- k}$ are false, because $\mathbf{k}$-th component of the vector $\frac{\partial^{3}}{\partial x^{2} \partial z}(\phi \overrightarrow{\mathrm{~A}})$ is zero. And the answer $\mathbf{4 i} \mathbf{i} \mathbf{2 j}$ is false because $j$-th component of the vector $\frac{\partial^{3}}{\partial x^{2} \partial z}(\phi \overrightarrow{\mathrm{~A}})$ is always greater or equal than zero:

$$
2 y^{4} \geq 0
$$

So, only i+j can be answer to the problem.
Answer: i+j.

