## Question 5606

The rate of change of the function $f(x)=\sec x+\cos x$ is given by the expression secxtanx-sinx. Show that this expression can also be written as $\sin x \tan (x)^{\wedge} 2$

First, lets find derivative of $f(x)$ and then show easy operations to solve the given task.
Remember, that

$$
\begin{equation*}
\sec (x)=\frac{1}{\cos (x)} ; \tan (x)=\frac{\sin (x)}{\cos (x)} \tag{1}
\end{equation*}
$$

The derivative

$$
\begin{equation*}
f^{\prime}(x)=-\sin (x)+\frac{1}{\cos ^{2}(x)} \cdot \sin (x) \tag{2}
\end{equation*}
$$

According to (1)

$$
\begin{equation*}
\sec (x) \cdot \tan (x)=\frac{\sin (x)}{\cos ^{2}(x)} \tag{3}
\end{equation*}
$$

Then, combining (2) and (3), we obtain: $f^{\prime}(x)=\sec (x) \tan (x)-\sin (x)$ (4) Also, we can convert (2), using $\sin ^{2}(x)+\cos ^{2}(x)=1 \quad$ :

$$
\begin{equation*}
f^{\prime}(x)=\frac{-\sin (x) \cos ^{2}(x)+\sin (x)}{\cos ^{2}(x)}=\frac{\sin (x)\left[1-\cos ^{2}(x)\right]}{\cos ^{2}(x)}=\frac{\sin ^{3}(x)}{\cos ^{2}(x)}=\sin (x) \cdot \tan ^{2}(x) \tag{5}
\end{equation*}
$$

We have proved both equalities.

