Answer on Question \#56040 -Math -Vector Calculus

One of the following laws for dot and cross multiplication of three vectors A, B and C is invalid:
(A.B) $C=A(B . C)$
$A \times(B \times C)=(A \cdot C) B-(A \cdot B) C$
$(A \times B) \times C=(A . C) B-(B . C) A$
$A \times(B \times C) \neq(A \times B) \times C$

Solution

(A.B)C=A(B.C)

$$
(\bar{A} \cdot \bar{B}) \bar{C}=\bar{A}(\bar{B} \cdot \bar{C}),
$$

The dot products are scalars, so it means

$$
\bar{C}=k \bar{A}, \text { where } k=\frac{(\bar{B} \cdot \bar{C})}{(\bar{A} \cdot \bar{B})}
$$

So \bar{C} is some scalar multiple of \bar{A}. Thus, this rule is not true for any three vectors \mathbf{A}, \mathbf{B} and \mathbf{C}.

