Answer on Question \#55447 - Math - Statistics and Probability

a company that manufactures rivets believes the shear strength of the rivets they manufacture follows a normal model with a mean breaking strength of 950 pounds and a standard deviation of 40 pounds
a) what percentage of rivets selected at random will break when tested under a 900 pound load?
b) you're trying to improve the rivets and want to examine some that fail. use a simulation to estimate how many rivets you might need to test in order to find three that fail at 900 pounds or below.

Solution

a) Let X follow a normal model with a mean of 950 pounds and a standard deviation of 40 pounds. Let Z follow a normal model with a mean of 0 pound and a standard deviation of 1 pound.
Then $Z=\frac{X-950}{40}$.
Calculate

$$
P(X<900)=P\left(\frac{X-950}{40}<\frac{900-950}{40}\right)=P\left(Z<\frac{900-950}{40}\right)=P(Z<-1.25)
$$

From z-table obtain that

$$
P(Z<-1.25)=0.1056
$$

hence

$$
P(X<900)=0.1056
$$

10.56% of rivets selected at random will break when tested under a 900 pound load.
b) Proportion of rivets that fail at 900 pounds or below is $0.1056=\frac{3}{n}$.

So sample size is determined by

$$
n=\frac{3}{0.1056}=28.4 \text { round up to } 29 .
$$

Answer: a) 10.56\%; b) 29.

