## Answer on Question \#55369 - Math - Statistics and Probability

## Question

Suppose that $61.5 \%$ of brides are younger than their grooms. Suppose one were to consider simple random samples of size 40 of brides. What is the probability that the proportion of brides in a sample of size 40 who are younger than their grooms exceeds 0.625 ?

## Solution

First of all, we find $40 \cdot 0.625=25$. Let $\xi$ be a number of brides who are younger than their grooms. We must find the next probability:
$P\{25<\xi \leq 40\}$.
Notice that $\xi$ has the binomial distribution with the parameters $p=0.615, n=40$.
We shall use the normal approximation (i.e. the integral theorem of Moivre-Laplace):
$P\{25<\xi \leq 40\}=P\left\{\frac{25-40 \cdot 0.615}{\sqrt{40 \cdot 0.615 \cdot 0.385}}<\frac{\xi-n p}{\sqrt{n p q}} \leq \frac{40-40 \cdot 0.615}{\sqrt{40 \cdot 0.615 \cdot 0.385}}\right\}=P\left\{0.13<\frac{\xi-n p}{\sqrt{n p q}} \leq 5\right\} \approx$
$\approx \Phi(5)-\Phi(0.13)=0.5-0.05172=0.44828$.
Here $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} d t$ is a tabulated function of Laplace and we found $\Phi(5), \Phi(0.13)$ using the table of this function.

Answer: 0.44828 .

