Answer on Question \#55335 - Math - Statistics and Probability

Question

10 red marbles and 10 blue marbles are placed into a bag. Alex mixes up the bag and randomly selects a marble. He continues to do so, replacing the marble after each selection, until a red marble is selected.
a. What is the probability that the first time that a red marble is pulled is on Alex's 6th try?
b. On average, how many marbles will Alex have to pull in order to get a red marble? (Hint: use math expectation).

Solution

a. Plainly, there are $10+10=20$ marbles in the bag. Using the classical definition of probability, the probability of selecting a red marble is given by

$$
p=\frac{10}{20}=0.5
$$

Similarly, probability of selecting a blue marble is

$$
q=\frac{10}{20}=0.5=1-p
$$

If marbles are replaced, then probability remains the same for all these experiments. We are asked what are the odds of selecting a red marble for the first time on the $6^{\text {th }}$ try. It means that we are asked to determine a probability of the case we will call Q (Alex selects 5 blue marbles on five first tries and a red one on the 6-th try).
Events of marble selection are independent, therefore

$$
\begin{gathered}
P(Q)=P\left(1^{\text {st }}=\text { blue and } 2^{\text {nd }}=\text { blue and } \ldots \text { and } 5^{\text {th }}=\text { blue and } 6^{\text {th }}=\text { red }\right)= \\
=P\left(1^{\text {st }}=\text { blue }\right) \cdot P\left(2^{\text {nd }}=\text { blue }\right) \cdot \ldots \cdot P\left(5^{\text {th }}=\text { blue }\right) \cdot P\left(6^{\text {th }}=\text { red }\right)= \\
=q \cdot q \cdot \ldots \cdot q \cdot p=q^{5} \cdot p=0.5^{5} \cdot 0.5 \approx 0.016 \text { or } P(Q)=1.6 \%
\end{gathered}
$$

Answer: 0.016.

Solution

b. Average number of pulls (denoted by $E(X)$) is a mathematical expectation of number of pulls. If Alex pulls a red marble on the $1^{\text {st }}$ try, then the number of such pulls will be

$$
x_{1}=1
$$

Probability of this event is just

$$
p_{1}=p=0.5
$$

Now, if it happens on the $2^{\text {nd }}$ try, the number is

$$
x_{2}=2
$$

and the probability is

$$
p_{2}=q \cdot p=p^{2}
$$

because this event is the following:
Alex selecting a blue marble on the first try (with probability q) and then selecting a red one (with probability p). Now, for 3-rd try the number of pulls is

$$
x_{3}=3
$$

and the probability is

$$
p_{3}=q \cdot q \cdot p=p^{3}
$$

Observing the pattern, we get formulae for the n-th try: number of pulls is

$$
x_{n}=n
$$

and probability is

$$
p_{n}=q \cdot \ldots \cdot q \cdot p=q^{n-1} \cdot p=p^{n}
$$

Then, by definition of the math expectation, we have
$\mathrm{E}(\mathrm{X})=\sum_{k=1}^{\infty} x_{k} p_{k}=x_{1} p_{1}+x_{2} p_{2}+x_{3} p_{3}+\cdots=\sum_{k=1}^{\infty} k p^{k}=\frac{p}{(1-p)^{2}}=\frac{0.5}{(1-0.5)^{2}}=\frac{1}{0.5}=2$.
Answer: 2.

