Answer on Question \#55333 - Math - Statistics and Probability

At the town fair, you can pay $\$ 5$ to toss a ring at a set of bottles. If you get a "ringer" on the small mouth bottle, you win $\$ 35$. If you get a "ringer" on the medium bottle, you win $\$ 10$. If you get a "ringer" on the large bottle, you get your $\$ 5$ fee back (that is, you break even). If you miss, you are out the $\$ 5$ you paid to play. Ryan is a good shot and his probability of getting a ringer on the small, medium, and large bottles is $10 \%, 10 \%$, and 5%, respectively.

X \quad - $\$ 5 \quad \$ 0 \quad \$ 10 \quad \$ 35$
$\begin{array}{lllll}P & 0.75 & 0.10 & 0.10 & 0.05\end{array}$
a. Find the math expectation of Ryan's winnings for a single game.
b. Find the math expectation of Ryan's winnings after 5 games.
c. Find the variance of Ryan's winnings for a single game.
d. Find the standard deviation of Ryan's winnings for a single game.
e. Does it pay for Ryan to play this game at the fair?
f. Find the cumulative distribution function of Ryan's winnings for a single game and draw its graph.

Solution

a. $E[X]=(0.75)(-\$ 5)+(0.05)(\$ 0)+(0.10)(\$ 5)+(0.10)(\$ 30)=-\$ 0.25$.
b. Playing 5 games, he can expect to lose a quarter per game, which would be a loss of $\$ 1.25$:

$$
E[5 X]=5 E[X]=-\$ 0.25 \cdot 5=-\$ 1.25
$$

c. The variance of Ryan's winnings for a single game is

$$
\begin{gathered}
\operatorname{Var}=E\left[X^{2}\right]-(E[X])^{2} \\
E\left[X^{2}\right]=(0.75)(-5)^{2}+(0.05)(0)^{2}+(0.10)(5)^{2}+(0.10)(30)^{2}=111.25 \\
\operatorname{Var}=111.25-(-0.25)^{2}=111.1875
\end{gathered}
$$

d. $S D=\sqrt{\operatorname{Var}}=\sqrt{111.1875}=\$ 10.54$.
e. It's not, as Ryan stands to lose money overall.
f. The cumulative distribution function of Ryan's winnings for a single game is

X	$-\$ 5$	$\$ 0$	$\$ 10$	$\$ 35$
$\mathrm{~F}(\mathrm{x})$	0.75	$0.75+0.10=0.85$	$0.85+0.10=0.95$	$0.95+0.05=1$

