Answer on Question \#55140 - Math - Statistics and Probability

In a partially destroyed laboratory, record of an analysis of correlation of data, only the following results are legible:

Variance of $\mathrm{X}=9$
Regression equations are
(*) $8 x-10 y+66=0$
(**) $40 x-18 y-214=0$
Find out the following missing results.
(i) The means of X and Y
(ii) The coefficient of correlation between x and y
(iii) The standard deviation of Y

Solution

(i) Since two regression lines always intersect at a point (\bar{x}, \bar{y}) representing mean values of the values \bar{x} and \bar{y} as shown below:

$$
\begin{aligned}
& 8 x-10 y=-66 \\
& 40 x-18 y=214
\end{aligned}
$$

Multiplying the first equation by 5 and subtracting from the second, we have $32 y=544 \Rightarrow \bar{y}=17$

Then $\bar{x}=(10 \bar{y}-66) / 8=(10 \cdot 17-66) / 8=13$
(ii) To find the given regression equations in such a way that the coefficient of dependent variable is less than one at least in one equation.

So, $8 x-10 y=-66 \Rightarrow 10 y=66+8 x \Rightarrow y=\frac{66}{10}+\frac{8}{10} x$.
That is, $b_{y x}=8 / 10=0.8$
And $40 x-18 y=214 \Rightarrow 40 x=214+18 y \Rightarrow x=\frac{214}{40}+\frac{18}{40} y$
That is, $b_{y x}=18 / 40=0.45$.
Hence coefficient of correlation r between x and y is given by:

$$
r=\sqrt{b_{x y} \times b_{y x}}=\sqrt{0.45 \cdot 0.80}=0.60
$$

(iii) To determine the standard deviation of y, consider the formula:

$$
\sigma_{y}=\frac{b_{y x} \sigma_{x}}{r}=\frac{0.8 \cdot \sqrt{9}}{0.6}=4
$$

