The following data were obtained from two random samples. Test whether the samples come from the same normal population at 5% level of significance.

No. Size Mean Sum of squares of deviation from mean
1101590
21214108

Solution

$$
\begin{gathered}
s_{1}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n_{1}-1}}=\sqrt{\frac{90}{10-1}}=\sqrt{10} \approx 3.16 . \\
s_{2}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n_{2}-1}}=\sqrt{\frac{108}{12-1}}=3.13
\end{gathered}
$$

1. Test whether means are different:
$H_{0}: \mu_{1}=\mu_{2}$
$H_{a}: \mu_{1} \neq \mu_{2}$

$$
T=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{15-14}{\sqrt{\frac{3.16^{2}}{10}+\frac{3.13^{2}}{12}}}=0.742
$$

Critical value for Student's T-distribution with $10+12-2=20$ degrees of freedom and $\frac{\alpha}{2}=\frac{0.05}{2}=0.025$ is

$$
t^{*}=2.086
$$

$T<t^{*}$, so we can conclude that means are the same.
2. Test whether variances are different:
$H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$
$H_{a}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{3.16^{2}}{3.13^{2}}=1.019
$$

Critical value for F-distribution with $10-1=9$ and $12-1=11$ degrees of freedom, $\alpha=0.05$, is

$$
f^{*}=3.59
$$

$F<f^{*}$, so we can conclude that variances are the same.
Answer: the samples come from the same normal population.

