Answer on Question \#55135 - Math - Statistics and Probability

Consider a random sample (WOR) of two households from a population of households having monthly income (in \$) as follows:

Household	1	2	3	4	5
Income	1000	1200	900	1500	1300

Enumerate all possible samples (WOR) of size 2 and show that the sample mean gives an unbiased estimate of population mean.

Solution

Let i be the number of household, X_{i} is the corresponding income.
The sample mean of pair i, j is given by

$$
\frac{X_{i}+X_{j}}{2} .
$$

All possible samples (WOR) of size 2:

Sample	the sample mean
12	1100
13	950
14	1250
15	1150
23	1050
24	1350
25	1250
34	1200
35	1100
45	1400

Population mean is
$\mu=\frac{1000+1200+900+1500+1300}{5}=1180$.
The sample mean is
$\frac{\sum \bar{x}_{l}}{n}=\frac{1100+950+1250+1150+1050+1350+1250+1200+1100+1400}{10}=1180$.
Thus, formulae (1) and (2) show that

$$
\frac{\sum \bar{x}_{L}}{n}=\mu .
$$

